物理化学学报 >> 2006, Vol. 22 >> Issue (03): 291-295.doi: 10.1016/S1872-1508(06)60004-1

研究论文 上一篇    下一篇

甲酸在Pt-Ru/GC电极上氧化的SERS研究

钟起玲; 黄芃; 张兵; 杨熊元; 丁月敏; 周海辉; 任斌; 田中群   

  1. 江西师范大学化学化工学院, 南昌 330022; 厦门大学化学系, 固体表面物理化学国家重点实验室, 厦门 361005
  • 收稿日期:2005-08-12 修回日期:2005-10-17 发布日期:2006-03-10
  • 通讯作者: 钟起玲 E-mail:zhqiling@163.com

SERS Study of the Electrooxidation of Formic Acid on Pt-Ru/GC

ZHONG Qi-Ling; HUANG Peng; ZHANG Bing; YANG Xiong-Yuan; DING Yue-Min; ZHOU Hai-Hui; REN Bin; TIAN Zhong-Qun   

  1. College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China; Department of Chemistry, State Key Laboratory for Physical Chemistry of Solid Surface, Xiamen University, Xiamen 361005, P. R. China
  • Received:2005-08-12 Revised:2005-10-17 Published:2006-03-10
  • Contact: ZHONG Qi-Ling E-mail:zhqiling@163.com

摘要: 采用循环伏安(CV)法、计时电流法和电化学原位表面增强拉曼散射光谱(SERS)技术研究了甲酸在Pt-Ru/GC电极上的氧化行为, 发现甲酸在Pt-Ru/GC电极上与在粗糙Pt电极上一样, 也能自发解离出强吸附中间体CO和活性中间体—COO-. 从分子水平证实钌的加入有利于提高电极对甲酸的电催化氧化活性, 当镀液中Pt:Ru的摩尔比从10∶1变化到1∶1, CO的氧化峰电位从0.41 V负移至0.35 V, 约负移了60 mV. Pt-Ru/GC(1∶1)电极与粗糙Pt电极相比, CO在电极表面氧化完毕的电位亦负移了约200 mV. 该研究结果表明, 电化学原位表面增强拉曼散射光谱技术可望成为研究电催化反应机理的普适谱学工具.

关键词: 甲酸氧化, 铂钌纳米粒子, 玻碳电极, 表面增强拉曼散射光谱

Abstract: The electrooxidation behavior of formic acid on Pt-Ru/GC electrode was investigated by CV, multi-potential steps and SERS. It was found that formic acid could dissociate spontaneously on Pt-Ru/GC electrode as it dissociated on rough Pt electrode, produce strong absorption intermediate CO and reactive intermediate —COO-. The results demonstrated that Ru could improve the electrocatalytic activity of formic acid on Pt-Ru/GC electrode. As the ratio of Pt and Ru in desposition solution changed from 10∶1 to 1∶1, the oxidation potential of CO shifted negatively about 60 mV(from 0.41 V to 0.35 V). Compared to rough Pt electrode, the oxidation potential of CO on Pt-Ru/GC(1∶1) shifted negatively 200 mV. These results indicate that SERS is hopeful to be a comprehensive spectroscopy tool of investigating the electrocatalytic reaction mechanism.

Key words: Formic acid oxidation, Platinum and ruthenium nanoparticles, Glassy carbon electrode, SERS