物理化学学报 >> 2008, Vol. 24 >> Issue (02): 230-236.doi: 10.1016/S1872-1508(08)60012-1

研究论文 上一篇    下一篇

邻联甲苯胺电氧化所致电荷转移配合物的电沉积及共存硫酸软骨素的影响

蒋雪琴; 曹志军; 谢青季; 姚守拙   

  1. 湖南师范大学化学化工学院, 化学生物学及中药分析教育部重点实验室, 长沙 410081
  • 收稿日期:2007-09-17 修回日期:2007-10-22 发布日期:2008-01-26
  • 通讯作者: 谢青季 E-mail:xieqj@hunnu.edu.cn

Electrodeposition of the Charge-Transfer Complex Generated during Electrooxidation of o-Tolidine and the Effects of Coexisting Chondroitin Sulfate

JIANG Xue-Qin; CAO Zhi-Jun; XIE Qing-Ji; YAO Shou-Zhuo   

  1. Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education of China, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
  • Received:2007-09-17 Revised:2007-10-22 Published:2008-01-26
  • Contact: XIE Qing-Ji E-mail:xieqj@hunnu.edu.cn

摘要: 采用电化学石英晶体微天平(EQCM)技术, 研究了B-R缓冲溶液中邻联甲苯胺(o-TD)电氧化生成的电荷转移配合物(CTC)的电沉积及共存硫酸软骨素(CS)的影响. 在弱酸性和中性(pH=4.07-6.50)溶液中进行循环伏安扫描时, 观察到谐振频率的“V”字型响应, 表明o-TD电氧化会产生水溶性差的电荷转移配合物中间体, 该CTC可在金电极上沉积和溶出. 考察了溶液pH值、电位扫描速率及支持电解质的影响, 发现该“V”字型频率响应深度(-⊿f0V)与支持电解质有关, -⊿f0V大小顺序为0.20 mol·L-1 NaNO3>0.20 mol·L-1 NaClO4>0.10 mol·L-1 Na2SO4. 发现共存硫酸软骨素可显著增大-⊿f0V, 采用红外和紫外-可见光谱表征了CTC和CS间的相互作用, 并用EQCM法定量测算了CTC与CS间的摩尔结合比(x)及其电极收集效率(η). 结果表明, -⊿f0V响应随CS 浓度增加而增大, 在0.75-15.2 μmol·L-1 CS 范围内呈良好线性关系, 检测下限为50 nmol·L-1, 藉此建立了CS的电化学分析新方法, 具有电极表面可动态更新的特点.

关键词: 电化学石英晶体微天平, 电荷转移配合物, 邻联甲苯胺, 硫酸软骨素分析, 电极表面动态更新

Abstract: The electrochemical quartz crystal microbalance (EQCM) technique was used to investigate the electrodeposition of the charge-transfer complex (CTC) generated during electrooxidation of o-tolidine (o-TD) in Britton-Robinson (B-R) buffers and effects of coexisting chondroitin sulfate (CS). A V-shaped frequency response to the cyclic voltammetric switching of o-TD indicated the precipitation and dissolution of the poorly soluble CTC, an oxidation intermediate, formed at the Au electrode during the redox switching of o-TD in a neutral or a weakly acidic medium (pH=4.07-6.50). The effects of potential scan rate, solution pH, and several supporting electrolytes were examined. The depth of the V-shaped frequency curves (-⊿f0V) was related to the supporting electrolyte used, with a decreasing sequence for -⊿f0V as 0.20 mol·L-1 NaNO3>0.20 mol·L-1 NaClO4>0.10 mol·L-1 Na2SO4. The -⊿f0V response to the redox switching of the CTC/o-TD“couple”was enhanced by the introduction of CS because of the formation of the CTC-CS adduct, as also characterized and supported by UV-Vis and FTIR spectrophotometry. The molar ratio (x) of the CTCto CSin the adduct and the electrode-collection efficiency of the CTC (η) were estimated using EQCM. The values of -⊿f0V increased with the increase in CS concentration, with a linear range from 0.75 to 15.2 μmol·L-1, and a detection limit down to 50 nmol·L-1. The new method proposed for CS assay was characterized by a dynamically renewed surface of the detection electrode.

Key words: Electrochemical quartz crystal microbalance, Charge-transfer complex, o-Tolidine, Assay of chondroitin sulfate, Dynamically renewed surface of the electrode

MSC2000: 

  • O646.5