物理化学学报 >> 2008, Vol. 24 >> Issue (06): 992-996.doi: 10.1016/S1872-1508(08)60045-5

研究论文 上一篇    下一篇

原位合成CoPc/SnO2的键合特性及可见光光催化活性

潘海波; 王芳; 黄金陵; 陈耐生   

  1. 福州大学化学化工学院, 福州 350002
  • 收稿日期:2008-02-18 修回日期:2008-03-07 发布日期:2008-06-03
  • 通讯作者: 潘海波 E-mail:hbpan@fzu.edu.cn

Binding Characteristics of CoPc/SnO2 by In-situ Process and Photocatalytic Activity under Visible Light Irradiation

PAN Hai-Bo; WANG Fang; HUANG Jin-Ling; CHEN Nai-Sheng   

  1. College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou 350002, P. R. China
  • Received:2008-02-18 Revised:2008-03-07 Published:2008-06-03
  • Contact: PAN Hai-Bo E-mail:hbpan@fzu.edu.cn

摘要: 报道了酞菁钴(CoPc)分子原位自组装于纳米SnO2颗粒表面, CoPc大环分子与SnO2表面形成Co—O轴向相互作用, 测定了原位合成方法(标记为i)制备的CoPc/SnO2(i)与浸渍法(标记为d)制备CoPc/SnO2(d)间的结合特性, 并进行了可见光光催化表征及CoPc敏化机理探讨. 结果表明, 在结合位点数相当的情况下, CoPc/SnO2(i)结合常数比CoPc/SnO2(d)的高两个数量级, 前者的光催化效率亦比后者高32.5%(光照150 min), 且CoPc/SnO2(i)光催化稳定性较高(重复十次循环使用). 其CoPc敏化SnO2的机理为, 由于敏化剂与半导体之间存在的强相互作用, 不仅增强了光生电荷在CoPc的LUMO与SnO2半导体导带间的导入效率及光生电荷对的分离效率, 而且提高了敏化剂的负载稳定性与循环光催化效率的持续性.

关键词: 原位自组装, 键合特性, 可见光光催化, 敏化机理, 稳定性

Abstract: Cobalt phthalocyanine (CoPc) was synthesized and self-assembled on the surface of nanoscale tin dioxide (SnO2) by in-situ process, marked as i, and Co-O interaction was verified to conjugate axially between macromolecule (CoPc) and SnO2 in CoPc/SnO2(i). The results indicated that the binding constant of CoPc/SnO2(i) was two-order higher than that of CoPc/SnO2(d) synthesized by dipping process, marked as d, while the numbers of binding sites were comparable in both samples. The degradation rate in the photocatalytic activity of CoPc/SnO2(i) was 32.5% higher than that of CoPc/SnO2(d) under visible-light irradiation for 150 min due to the effective electron separation and energy injection from LUMO of CoPc to conduction band of SnO2 for CoPc/SnO2(i) based on the strong interaction between CoPc and SnO2. The degradation recyclability of CoPc/SnO2(i) retained 48.8% in 10 times under the same circular photocatalytic process.

Key words: In-situ synthesis, Binding characteristics, Photocatalysis under visible light irradiation, Sensitized mechanism, Stability

MSC2000: 

  • O643