物理化学学报 >> 1996, Vol. 12 >> Issue (05): 385-390.doi: 10.3866/PKU.WHXB19960501

通讯    下一篇

NH0-1+2-3离解能等的高级ab initio计算与评价

苏克和,文振翼,胡小玲,李秀仪,王育彬   

  1. 西北工业大学化工系,西安 710072;1西北大学现代物理研究所,西安 710069
  • 收稿日期:1996-01-22 修回日期:1996-03-13 发布日期:1996-05-15
  • 通讯作者: 苏克和

High-level ab initio Calculation and Assessment of the Dissociation and Lonization Energies of NH2 and NH3 Neutrals or Cations

Su Ke-He,Wen Zhen-Yi,Hu Xiao-Ling,Li Xiu-,Y,Wang Yu-Bin   

  1. Department of Chemical Engineering,Northwestern Polytechnical University,Xi'an 710072;Institute of Modern Physics,Northwest University,Xi'an 710069
  • Received:1996-01-22 Revised:1996-03-13 Published:1996-05-15
  • Contact: Su Ke-He

关键词: NH3, NH+3, NH2, NH+2, 离解能, 电离能, 从头算

Abstract:

  A recent experimental determination[1] of the dissociation energies (D0) for H2N-H, H2N+-H and H2N-H+, the ionization energies for NH3 and NH2 resulted in large deviations when compared with those of the earlier values and the QCISD(T)/6-311+G(3df,2p) ab initio calculations. We have performed some higher level ab initio calculations on these data by utilizing the Gaussian 92/DFT and Gaussian 94 pakages of programs and have assessed the available experimental values. Our calculations were carried out at the QCISD (TQ)/aug-cc-pVDZ, G2(QCI), QCISD(T)/6-311 ++G(3df,3pd) and QCISD(T)/aug-cc-pVTZ levels of theory. Geometries were optimized at both of the MP2(full)/6-31G(d) and the MP2(full)/6-31(d,p) levels, and were compared with those of the experiments if available. The MP2(full)/6-31G(d,p) tight-optimized geometries for the neutrals are closer to those of the experiments than those of the MP2 (full)/6-31G(d), and are in excellent agreement with the experimental results as shown in Table 1. In this case, we assumed that the optimized geometries for the cations would be better if p polarization functions are added to the hydrogen atoms. We firstly noted that the symmetry of the NH3+ cation was D3h, other than Cs. as reported in ref.[1]. All of the zero-point energies and the final geometries are calculated at the MP2(full)/6-31G(d,p) level of theory. We have also repeated the QCISD(T )/6-311 + G(3df,2p) calculations of ref. [1], because we could not identify their level of goemetry optimization. It is found that the total energy, -55.244 19 Hartrees, for NH2+(1A1 ) in ref.[1] might be in error. Our result is -55.336 29 Hartrees at the same level of theory. At our highest level [QCISD(T)/aug-cc-pVTZ] of calculations as shown in Table 3, the D0 (temperature at zero Kelvin) values of H2N-H, H2N+-H(3B1for NH2+ ) and H2N- H+ are 4.51, 5.49 and 8.00 eV,  respectively. These data reported in re f.[1] were 4.97, 5.59 and 8.41 eV, respectively. Our result on D0(H2N-H) supports the work of ref.[2,3,5,6]. The ionization energies (IE) for NH3 and NH2 (3B1 for NH2+) at our highest level are 10.11 and 11.09 eV while in ref.[1] were 10.16 and 10.78 eV, respectively. For the latter, our result supports the experiment of ref.[3]. Our predicted D0 for HN2+-H and IE for NH2 (1A1 for each NH2+) are 6.80 and 12.39 eV, respectively. These values differ greatly from the predicted values (9.29 and 14.88 eV) of ref.[1] where the total energy of NH2+(1A1) might be in error. The D0 value for HN-H has not been found in ref.[1]. Our result supports the work of ref.[3]. We have also derived all of these values at the temperature of 298K and under the pressure of 101kPa at several levels of thoery as shown in Table 3. On examining the experiment of ref.[1] in detail, it is easy to find that all of the larger deviations might be from a too high value of the appearance potential of proton AP(H+). Indeed, ref.[1] has mentioned that the determintion of AP(H+), due to kinetic shift, would lead to a hihger value for the dissociation energy as has been pointed out by Berkowitz and Ruscic. In this work, we concluded that, besides some mistakes in the theoretical calculations of ref.[1], the dissociation energies for H2N-H and H2N-H+,the IE for NH2 (3B1 for NH2+) might also be unreliable and need to be re-examined.

Key words: NH3, NH+3, NH2, NH+2, Dissociation, Ionization, Ab initio