物理化学学报 >> 2001, Vol. 17 >> Issue (09): 792-796.doi: 10.3866/PKU.WHXB20010906

研究论文 上一篇    下一篇

氧化锆基固体电解质材料与温度无关的离子电导活化能

李英;龚江宏;唐子龙;谢裕生;张中太   

  1. 中国科学院化工冶金研究所,北京 100080;清华大学材料科学与工程系 新型陶瓷与精细工艺国家重点实验室, 北京 100084
  • 收稿日期:2001-01-20 修回日期:2001-04-13 发布日期:2001-09-15
  • 通讯作者: 龚江宏 E-mail:gong@tsinghua.edu.cn

Temperature-Independent Activation Energy for Ionic Conduction of Zirconia Based Solid Electrolytes

Li Ying;Gong Jiang-Hong;Tang Zi-Long;Xie Yu-Sheng   

  1. Institute of Chemical Metallurgy,Chinese Academy of Sciences,Beijing 100080;State Key Laboratory of New Ceramics and Fine Processing,Department of Materials Science and Engineering,Tsinghua University,Beijing 100084
  • Received:2001-01-20 Revised:2001-04-13 Published:2001-09-15
  • Contact: Gong Jiang-Hong E-mail:gong@tsinghua.edu.cn

摘要: 氧化锆(ZrO2)基固体电解质材料的离子电导率随温度的变化关系呈现非线性Arrhenius特征;相应地,由经典的Arrhenius公式计算得到的电导活化能是一个与温度有关的参数.本文通过对实验获得的几种Y2O3稳定立方ZrO2(YSZ) 材料的电导率-温度关系的分析,对经典的Arrhenius公式进行了修正.由修正后的Arrhenius公式计算得到的电导活化能是一个与温度无关的常数.此外,还进一步借助于物理化学中的过渡状态理论,从材料离子导电机制出发对这一与温度无关的电导活化能的合理性进行了讨论,发现这一活化能在数值上与理论计算结果吻合得很好.

关键词: 离子电导率, 活化能, 固体电解质, 氧化锆, 非线性Arrhenius行为

Abstract: Previous studies have shown that the temperature dependence of the ionic conductivity of zirconia based solid electrolytes exhibit an unusual nonlinear Arrhenius behavior and,as a result, the activation energy for ionic conductivity resulting from the analysis according to the classical Arrhenius equation is temperaturedependent.In this paper,a modified Arrhenius equation was proposed,based on the measurement and analysis of the conductivity for three kinds of Y2O3stablized ZrO2,to describe the temperature dependence of the ionic conductivity.It was found that the activation energy deduced from the modified Arrhenius equation is a constant independent of temperature.The validity of such a temperatureindependent activation energy was further discussed based on the transitionstate theory in physical chemistry.

Key words: Ionic conductivity, Activation energy, Solid electrolyte, Zirconia, Nonlinear Arrhenius behavior