物理化学学报 >> 2007, Vol. 23 >> Issue (03): 311-316.doi: 10.3866/PKU.WHXB20070306

研究论文 上一篇    下一篇

CH2NH与O(3P)反应的量子化学及电子密度拓扑研究

杨丽娟;孟令鹏;曾艳丽;郑世钧   

  1. 华北电力大学, 河北 保定 071003; 河北师范大学计算量子化学研究所, 石家庄 050016
  • 收稿日期:2006-07-28 修回日期:2006-10-04 发布日期:2007-03-07
  • 通讯作者: 郑世钧 E-mail:sjzheng@mail.hebtu.edu.cn

Quantum Chemistry and Electron Density Topological Study on the Reaction of CH2NH(s) with O(3P) Atom

YANG Li-Juan;MENG Ling-Peng;ZENG Yan-Li;ZHENG Shi-Jun
  

  1. North China Electric Power University, Baoding 071003, Hebei Province, P. R. China; Institute of Quantum Chemistry, Hebei Normal University, Shijiazhuang 050016, P. R. China
  • Received:2006-07-28 Revised:2006-10-04 Published:2007-03-07
  • Contact: ZHENG Shi-Jun E-mail:sjzheng@mail.hebtu.edu.cn

摘要: 采用B3LYP、MP2(full)和 QCISD 三种方法在6-311G(d, p)和aug-cc-pVDZ基组水平上对三线态O(3P)原子与CH2NH(s)的反应进行了详细的理论研究. 采用B3LYP和MP2(full)方法对反应势能面上的各驻点进行了几何构型优化, 通过振动频率分析证实了过渡态的真实性, 内禀反应坐标(IRC)跟踪验证了过渡态与反应物和产物的连接关系, 用上述三种方法计算得到了各反应通道的反应势垒. 对反应过程中的一些重要点进行了电子密度拓扑分析研究. 研究结果表明, O(3P)原子进攻CH2NH(s)中的N2原子和C1原子生成CH2NHO(t)和OCH2NH(t), CH2NHO(t)中N2上的H5可迁移到C1上异构化为CH3NO(t).

关键词: 反应机理, 结构过渡态, 反应势垒, 电子密度拓扑分析

Abstract: The reactions of O(3P) with ground state CH2NH(s) were investigated using B3LYP, MP2 (full), and QCISD methods using 6-311G(d, p) and aug-cc-pVDZ basis sets. Geometries of stationary points on reaction potential surfaces were optimized using B3LYP and MP2(full) methods. The characterizations of the transition states were confirmed by vibration analysis. The reaction barriers are obtained using above-mentioned methods. The intrinsic reaction coordinates (IRC) were traced according to Fukui's theory and the connecting relationship of the transition states with the reactants and products was confirmed. The calculated results showed that O(3P) atom attacked N2 and C1 atoms in CH2NH(s) producing CH2NHO(t) and OCH2NH(t) respectively, CH2NHO(t) rearranged to CH3NO(t) through a ring structure transition state when H5 shifted from N to C1.

Key words: Reaction mechanism, Structure transition state, Reaction barrier, Electron density topological analysis