物理化学学报 >> 2007, Vol. 23 >> Issue (10): 1560-1564.doi: 10.3866/PKU.WHXB20071013

研究论文 上一篇    下一篇

H+、NH+4对HMX的N—NO2键解离能的影响

王罗新; 刘勇; 庹新林; 李松年; 王晓工   

  1. 清华大学化学工程系, 高分子研究所, 北京 100084
  • 收稿日期:2007-05-11 修回日期:2007-05-29 发布日期:2007-10-01
  • 通讯作者: 庹新林 E-mail:tuoxl@mail.tsinghua.edu.cn

Effect of H+ and NH+4 on the N—NO2 Bond Dissociation Energy of HMX

WANG Luo-Xin; LIU Yong; TUO Xin-Lin; LI Song-Nian; WANG Xiao-Gong   

  1. Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
  • Received:2007-05-11 Revised:2007-05-29 Published:2007-10-01
  • Contact: TUO Xin-Lin E-mail:tuoxl@mail.tsinghua.edu.cn

摘要: 采用密度泛函理论的B3P86/6-31G**方法, 优化了β-HMX及其与H+、NH+4分别形成的复合物的稳定结构, 计算了β-HMX以及复合物中最弱的N—NO2键解离能. 结果发现, HMX与H+、NH+4形成复合物后, 使HMX的构型产生较大变化; 与H+结合后, HMX的一个N—NO2键显著伸长, 键级变小; 但与NH+4形成复合物后, HMX中键级最小的N—NO2键长变化不大. 键解离能计算表明, 同β-HMX相比, 与H+形成的两种复合物中N—NO2键解离能分别降低了近20 和82 kJ·mol-1, 而HMX与NH+4形成的复合物中N—NO2键解离能仅降低了约8 kJ·mol-1, 表明H+β-HMX的N—NO2键的初始热裂解反应有促进作用, 而NH+4影响不明显.

关键词: HMX, 键解离能, 热解反应, 密度泛函理论

Abstract: The structure of β-HMX and several complexes with H+ or NH+4 were optimized using the density functiona theory(DFT)at the B3P86/6-31G** level. Meanwhile, the bond dissociation energies of the weakest N—NO2 for β-HMX and the complexes were obtained by the same calculation method. It was found that the geometrical configuration of the HMX in the complexes differed significantly from that of β-HMX. On the other hand, one of the N—NO2 bonds of HMX was activated due to the combination of H+ with HMX, but this activation was unobvious for the complexes with NH+4 . The N—NO2 bond dissociation energies of two complexes with H+ decreased about 20 and 82 kJ·mol-1, respectively, in comparison with that of β-HMX. However, the N—NO2 bond dissociation energy for the complex with NH+4 decreased only about 8 kJ·mol-1. It indicated that the H+ could promote the initial thermal decomposition of N—NO2 bond of β-HMX, but this initial decomposition was slightly influenced by NH+4.

Key words: HMX, Bond dissociation energy, Thermal decomposition, DFT

MSC2000: 

  • O641