物理化学学报 >> 2009, Vol. 25 >> Issue (08): 1587-1592.doi: 10.3866/PKU.WHXB20090752
陈渊, 袁哲明, 周玮, 熊兴耀
CHEN Yuan, YUAN Zhe-Ming, ZHOU Wei, XIONG Xing-Yao
摘要:
基于主成分分析(PCA)、地统计学(GS)和支持向量回归(SVR), 提出了一种新的定量构效关系(QSAR)个体化预测方法——Weight-PCA-GS-SVR. 其基本思路是: 先以PCA降维并消除自变量间的信息冗余, 继以SVR经非线性主成分筛选去除与因变量无关的主成分, 再以保留主成分计算样本间的加权距离, 然后以高维GS确定公用变程; 每一个待测样本都以自身为中心从训练集中找出加权距离小于公用变程的私有k个近邻, 以SVR训练建模完成个体化预测. Weight-PCA-GS-SVR从行、列两个方向对模型进行了优化, 为自变量提供了一种新的加权方法, 为解决最优k近邻选择难题提供了新的思路, 并具有SVR原来的优点. 经3个化合物活性实例数据集验证, 新方法在所有参比模型中预测精度最高, 且明显优于文献报道结果, Weight-PCA-GS-SVR在QSAR等回归预测领域有较广泛的应用前景.
MSC2000:
O641