物理化学学报 >> 2010, Vol. 26 >> Issue (05): 1296-1304.doi: 10.3866/PKU.WHXB20100322

催化和表面结构 上一篇    下一篇

Cu-Ni/γ-Al2O3双功能催化剂上二甲醚水蒸气重整制氢

王晓蕾, 潘相敏, 林瑞, 寇素原, 邹卫兵, 马建新   

  1. 同济大学环境科学与工程学院, 上海 200092; 同济大学新能源汽车工程中心, 上海 201804; 同济大学汽车学院, 上海 201804; 华东理工大学资源与环境工程学院, 上海 200237
  • 收稿日期:2009-09-16 修回日期:2009-11-30 发布日期:2010-04-29
  • 通讯作者: 马建新 E-mail:jxma@tongji.edu.cn

Dimethyl Ether Steam Reforming for Hydrogen Production over Cu-Ni/γ-Al2O3 Bi-Functional Catalyst

WANG Xiao-Lei, PAN Xiang-Min, LIN Rui, KOU Su-Yuan, ZOU Wei-Bing, MA Jian-Xin   

  1. School of Environmental Science and Engineering, Tongji University, Shanghai 200092, P. R. China; Clean Energy Automotive Engineering Center, Tongji University, Shanghai 201804, P. R. China; School of Automotive Studies, Tongji University, Shanghai 201804, P. R. China; Shool of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
  • Received:2009-09-16 Revised:2009-11-30 Published:2010-04-29
  • Contact: MA Jian-Xin E-mail:jxma@tongji.edu.cn

摘要:

用沉积-沉淀法分别制备了Cu/γ-Al2O3、Ni/γ-Al2O3和Cu-Ni/γ-Al2O3催化剂, 并研究了它们在二甲醚水蒸气重整(DME SR)制氢反应中的催化性能. 采用比表面积测定(BET)、X射线衍射(XRD)、H2 程序升温还原(H2-TPR)、X射线光电子能谱(XPS)、NH3程序升温脱附(NH3-TPD)、程序升温氧化(TPO)和透射电子显微镜(TEM)等表征手段对催化剂的物相结构、微观形貌、还原性能、表面酸性和积炭特性等进行了研究. 结果表明: Cu、Ni均为二甲醚水蒸气重整制氢的活性组分, Cu、Ni和γ-Al2O3之间存在着相互作用; 镍的加入可以有效地提高铜组分在γ-Al2O3上的表面富集与分散, 优化铜组分的分布状态, 促进CuO颗粒的细小化, 并可增强铜组分和载体之间的相互作用, 有效地防止铜晶粒的团聚, 从而提高催化剂的活性及稳定性; 铜的加入可以改善催化剂中金属镍的分散性, 减少镍颗粒的尺寸, 降低催化剂对CH4的选择性, 提高催化剂的H2产率, 并在一定程度上抑制了积炭的形成与沉积. 在350 ℃的温度下, 反应进行100 h后, Cu-Ni/γ-Al2O3催化剂仍保持95%的二甲醚转化率, 说明该催化剂具有较好的活性和稳定性.

关键词: 铜, 镍, 氧化铝, 二甲醚水蒸气重整, 制氢, 稳定性

Abstract:

Cu/γ-Al2O3, Ni/γ-Al2O3, and Cu-Ni/γ-Al2O3 catalysts were prepared using the deposition-precipitation method and the catalytic performances for hydrogen production during dimethyl ether steam reforming(DME SR) were investigated. The structure and surface characteristics of these catalysts were analyzed by Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD), H2 temperature-programmed reduction (H2-TPR), X-ray photoelectron spectroscopy (XPS), NH3 temperature-programmed desorption (NH3-TPD), temperature-programmed oxidation (TPO), and transmission electron microscopy (TEM). It was revealed that both copper and nickel were active components during DME SR and there were interactions among Cu, Ni, and γ-Al2O3. Nickel addition improved copper dispersion to obtain small copper crystallites, and strengthened the interaction between copper and γ-Al2O3 so as to prevent copper agglomeration. Copper addition also improved nickel dispersion and the smaller nickel particle size suppressed CH4 formation, which prevented coke formation. Therefore, Cu-Ni/γ-Al2O3 with superior catalytic activity and stability was obtained. During 100 h durability testing, the Cu-Ni/γ-Al2O3 maintained about 95% DME conversion and did not show obvious deactivation.

Key words: Copper, Nickel, Alumina, Dimethyl ether steamreforming, Hydrogen production, Stability

MSC2000: 

  • O643