物理化学学报 >> 2010, Vol. 26 >> Issue (05): 1364-1372.doi: 10.3866/PKU.WHXB20100529

量子化学及计算化学 上一篇    下一篇

羟烷基胺功能化离子液体吸收SO2的量子化学计算

李学良, 陈洁洁, 罗梅, 陈祥迎, 李培佩   

  1. 合肥工业大学化学工程学院, 可控化学与材料化工安徽省重点实验室, 合肥 230009
  • 收稿日期:2009-12-28 修回日期:2010-01-29 发布日期:2010-04-29
  • 通讯作者: 李学良 E-mail:xueliangli2005@163.com

Quantum Chemical Calculation of Hydroxyalkyl Ammonium Functionalized Ionic Liquids for Absorbing SO2

LI Xue-Liang, CHEN Jie-Jie, LUO Mei, CHEN Xiang-Ying, LI Pei-Pei   

  1. Anhui Key Laboratory of Controllable Chemistry Reaction and Material Chemical Engineering, School of Chemical Engineering, Hefei University of Technology, Hefei 230009, P. R. China
  • Received:2009-12-28 Revised:2010-01-29 Published:2010-04-29
  • Contact: LI Xue-Liang E-mail:xueliangli2005@163.com

摘要:

采用量子化学中的密度泛函理论(DFT)对羟烷基胺离子液体(HyAA ILs)与二氧化硫(SO2)的相互作用进行了研究. 通过几何结构优化, 电荷分布和热力学参数计算等来确定离子液体中能够有效吸收SO2的官能团. HyAA ILs与SO2反应形成平均距离为0.240 nm的S—N键, 导致电荷从ILs转移到SO2以及S—O 键长和O—S—O键角的改变. 气态和液态模型的计算结果表明, 标准吉布斯函数变(△GΘ)主要取决于阳离子的结构和分子质量. 阳离子结构影响了吸收反应能垒, 对于三种阳离子体系的反应活化能顺序为: Ea(secondary)

关键词: 密度泛函理论, 羟烷基胺离子液体, 热力学性质, 活化能, 实验验证

Abstract:

Interactions between hydroxyalkyl ammonium ionic liquids (HyAA ILs) and sulfur dioxide (SO2) were investigated by quantum chemical calculations using first-principles density functional theory. The optimized geometry, charge distribution, and thermodynamic parameters were obtained and used to identify the effective groups in the ILs that absorb SO2. HyAA ILs react with SO2 and form S—N bonds with an average distance of 0.240 nm. This reaction results in charge transfer from ILs to SO2 as well as changes in the S—O bond length and the O—S—O bond angle. The calculated results from the gas and liquid state models indicate that the standard Gibbs free energy change (△G Θ) of the absorption reaction is mainly determined by the geometry of these cations and their molecular weight. The cation structure influences the energy barrier of the absorption reaction and the activation energy (Ea) changes as follows: Ea(secondary)

Key words: Density functional theory, Hydroxyalkyl ammoniumionic liquids, Thermodynamic property, Activation energy, Experimental verification

MSC2000: 

  • O641