物理化学学报 >> 2010, Vol. 26 >> Issue (11): 2967-2974.doi: 10.3866/PKU.WHXB20101124

电化学 上一篇    下一篇

SPES/PWA/SiO2复合质子交换膜的性能

龚春丽1, 周毅1, 闫礼成2, 文胜1,2, 郑根稳1   

  1. 1. 孝感学院化学与材料科学学院, 湖北孝感432000;
    2. 湖北大学材料科学与工程学院, 武汉430062
  • 收稿日期:2010-06-02 修回日期:2010-08-25 发布日期:2010-10-29
  • 通讯作者: 文胜 E-mail:shengwen@xgu.cn
  • 基金资助:

    湖北省自然科学基金(2009CDZ016)资助项目

Properties of SPES/PWA/SiO2 Composite Proton Exchange Membranes

GONG Chun-Li1, ZHOU Yi1, YAN Li-Cheng2, WEN Sheng1,2, ZHENG Gen-Wen1   

  1. 1. Faculty of Chemistry and Materials Science, Xiaogan University, Xiaogan 432000, Hubei Province, P. R. China;
    2. Faculty of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China
  • Received:2010-06-02 Revised:2010-08-25 Published:2010-10-29
  • Contact: WEN Sheng E-mail:shengwen@xgu.cn
  • Supported by:

    The project was supported by the Natural Science Foundation of Hubei Province, China (2009CDZ016).

摘要:

以磺化聚醚砜(SPES)为基体, 以不同比例的SiO2溶胶与磷钨酸(PWA)为掺杂物, 制备了一种有望用于直 接甲醇燃料电池(DMFC)的新型SPES/PWA/SiO2 有机-无机复合膜, 并经热失重分析(TGA)、差示扫描量热仪(DSC)、扫描电镜(SEM)-X 射线能谱分析(EDX)等对膜的结构和性能进行了表征, 探讨了复合膜用作质子交换膜 的可能性. 结果表明: 复合膜较纯SPES 膜具有更高的热稳定性、玻璃化转变温度和吸水率; 虽然在室温和电池 操作温度(80℃)下, 复合膜的拉伸强度均低于纯SPES膜, 但即使当SiO2含量高达20%(w)时, 复合膜的拉伸强度仍高于Nafion 112 膜的; SEM 图片显示SiO2和PWA 在膜中分布均匀, 这将有利于连续质子传输通道的形成.对于SiO2含量为15%(w), PWA 含量为6%(w) 的复合膜, 其室温质子传导率达到了0.034 S·cm-1, 与Nafion 112膜的相当, 但其甲醇渗透率明显降低,仅为商用Nafion 112 膜的七分之一左右,这表明该复合膜在直接甲醇燃料电池中具有良好的应用前景.

 

关键词: 直接甲醇燃料电池, 磺化聚醚砜, 二氧化硅, 磷钨酸, 复合膜

Abstract:

Novel sulfonated poly(ether sulfone) (SPES)/phosphotungstic acid (PWA)/silica organic-inorganic composite membranes for application in direct methanol fuel cells (DMFCs) were prepared by doping SiO2 sol and PWA into SPES matrix. The structure and performance of the obtained membranes were characterized by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX), etc. Compared with the pure SPES membrane, SiO2 and PWA doping led to higher thermal stabilities, a higher glass transition temperature (Tg), and higher water uptake. At 20℃ and a fuel cell operating temperature of 80℃, the tensile strength of all the composite membranes was lower than that of the SPES membrane. However, even when the content of SiO2 was as high as 20% (w), the composite membrane still possessed a higher strength than a Nafion 112 membrane. The morphology of the composite membranes indicated that SiO2 and PWA were uniformly distributed throughout the SPES matrix, which may facilitate proton transport. The proton conductivity of the composite membrane (SPES-P-S 15%: 15% (w) SiO2 and 6% (w) PWA) reached 0.034 S·cm-1, which was similar to that of the Nafion 112 membrane at room temperature. However, methanol permeation through the SPES-P-S 15% composite membrane decreased dramatically and was only one-seventh that of the Nafion 112 membrane. This excellent selectivity of the SPES/PWA/SiO2 composite membrane points to its potential use as a promising electrolyte for DMFCs.

 

Key words: Direct methanol fuel cell, Sulfonated poly(ether sulfone), SiO2, Phosphotungstic acid, Composite membrane

MSC2000: 

  • O646