Please wait a minute...
物理化学学报  2011, Vol. 27 Issue (03): 736-742    DOI: 10.3866/PKU.WHXB20110320
材料物理化学     
石墨烯薄膜的制备和结构表征
杨勇辉1, 孙红娟2, 彭同江2, 黄桥1
1. 西南科技大学理学院, 四川 绵阳 621010;
2. 西南科技大学矿物材料及应用研究所, 四川 绵阳 621010
Synthesis and Structural Characterization of Graphene-Based Membranes
YANG Yong-Hui1, SUN Hong-Juan2, PENG Tong-Jiang2, HUANG Qiao1
1. College of Science, Southwest University of Science and Technology, Mianyang 621010, Sichuan Province, P. R. China;
2. Institute of Mineral Materials & Application, Southwest University of Science and Technology, Mianyang 621010, Sichuan Province, P. R. China
 全文: PDF(655 KB)   输出: BibTeX | EndNote (RIS) |
摘要:

采用氧化还原法制备了石墨烯胶状悬浮液, 通过真空抽滤获得了石墨烯薄膜. 利用X射线衍射(XRD)、傅里叶变换红外(FTIR)光谱、拉曼(Raman)光谱、粒度分析和扫描探针显微镜(SPM)等研究了石墨烯薄膜制备过程中各阶段产物的晶体结构、粒度及分子光谱特征变化. FTIR分析结果表明, 石墨在氧化过程中结构层键合大量含氧官能团, 还原后结构层表面仍残存有部分稳定的含氧官能团. XRD结果表明, 石墨氧化后衍射峰向小角度偏移、宽化, 原有石墨峰消失. 在成膜过程中氧化石墨烯形成凝聚体,而石墨烯形成絮凝体. 粒度分析和SPM测试分析结果表明, 氧化石墨烯在水中粒径分布呈拖尾峰形, 分布范围较宽. 石墨烯在水中的粒径成单峰分布, 分布范围较窄、对称性较好且平均粒径较小. Raman测试结果表明, 石墨在氧化和还原过程中, D、G峰逐渐宽化, ID/IG逐渐增强, 样品无序度增加. 在以上分析的基础上对石墨烯制备过程的结构特征进行了归纳总结.

关键词: 石墨氧化石墨石墨烯氧化还原法晶体结构    
Abstract:

A stable hydrosol of graphene was synthesized by oxidation reduction and then a flow assembly of this graphene was used to form a graphene-based membrane by vacuum extraction filtering method. X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, particle size analysis, and scanning probe microscopy (SPM) were used to characterize the crystal structure, granularity, and characteristic change of the molecular spectrum of the samples in the reaction. FTIR tests show that the structural layer of graphite during the oxidation process bonds to a large number of functional groups and parts of these stable functional groups remain on the reduced structural layer of graphene. X-ray diffraction results show that the peaks of the graphite oxide shift to lower angles, become broader and the original graphite peak disappears. Suspensions of graphene oxide form condensed matter and graphene flocculating constituent during film deposition. Particle size analysis and SPM tests show that the particle sizes of the graphene oxide sheets that are dispersed in water show a tailing peak and a broad distribution while the graphene sheets show a singlet, narrower distribution, and smaller dimensions. Raman results show that during oxidation and reduction, the D peak and G peak of the samples gradually extend, ID/IG increases gradually and the degree of sample disorder increases. On the basis of the above analyses, the structural characteristics of the samples in the reaction are summarized.

Key words: Graphite    Graphite oxide    Graphene    Oxidation reduction    Crystal structure
收稿日期: 2010-09-30 出版日期: 2011-02-15
中图分类号:  O641  
基金资助:

西南科技大学研究生创新基金(10ycjj21)资助项目

通讯作者: 孙红娟     E-mail: sunhongjuan@swust.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
杨勇辉
孙红娟
彭同江
黄桥

引用本文:

杨勇辉, 孙红娟, 彭同江, 黄桥. 石墨烯薄膜的制备和结构表征[J]. 物理化学学报, 2011, 27(03): 736-742, 10.3866/PKU.WHXB20110320

YANG Yong-Hui, SUN Hong-Juan, PENG Tong-Jiang, HUANG Qiao. Synthesis and Structural Characterization of Graphene-Based Membranes. Acta Phys. -Chim. Sin., 2011, 27(03): 736-742, 10.3866/PKU.WHXB20110320.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB20110320        http://www.whxb.pku.edu.cn/CN/Y2011/V27/I03/736

(1) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666.
(2) Yang, Q. H.; Lü, W.; Yang, Y. G.; Wang, M. Z. New Carbon Materials 2008, 23, 97.
[杨全红, 吕 伟, 杨永岗, 王茂章. 新型炭材料, 2008, 23, 97.]
(3) Gu, Z. B.; Ji, G. H.; Lu, M. H. Journal of Nanjing University of Technology (Natural Science) 2010, 32, 105.
[顾正彬, 季根华, 卢明辉. 南京工业大学学报: 自然科学版, 2010, 32, 105.]
(4) Zhang, W. N.; He, W.; Zhang, X. L. New Chemical Materials 2010, 38, 15.
[张伟娜, 何 伟, 张新荔. 化工新型材料, 2010, 38, 15.]
(5) Meyer, J. C.; Geim, A. K.; Katsnelson, M. I.; Novoselov, K. S.; Booth, T. J.; Roth, S. Nature 2007, 446, 60.
(6) Geim, A. K.; Novoselov, K. S. Nature Mater. 2007, 6, 183.
(7) Kim, S. K.; Zhao, Y.; Jang, H.; Lee, Y. S.; Kim, M. J.; Ahn, H. J.; Kim, P.; Choi, Y. J.; Hong, H. B. Nature, 2009, 457, 706.
(8) Obraztsov, N. A. Nat. Nanotech. 2009, 4, 212.
(9) Tung, C. V.; Allen, J. M.; Yang, Y.; Kaner, B. R. Nat. Nanotech. 2009, 4, 25.
(10) Li, D.; Muller, M. B.; Gilje, S.; Kaner, B. R.; Wallace, G. G. Nat. Nanotech. 2008, 3, 101.
(11) Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F.; Sun, Z.; De, S.; McGovern, I. T.; Holland, B.; Byrne, M.; Gunko, Y.; Boland, J.; Niraj, P.; Duesberg, G.; Krishnamurti, S.; Goodhue, R.; Hutchison, J.; Scardaci, V.; Ferrari, A. C.; Coleman, J. N. Nat. Nanotech. 2008, 3, 563.
(12) Hamilton, C. E.; Lomeda; J. R.; Sun, Z. Z.; Tour, M. J.; Barron, R. D. Nano Lett. 2009, 9, 3460.
(13) Choucair, M.; Thordarson, P.; Stride, J. A. Nat. Nanotech. 2009, 4, 30.
(14) Wang, H. L.; Robinson, J. T.; Li, X. L.; Dai, H. J. J. Am. Chem. Soc. 2009, 131, 9910.
(15) Ramesh, P.; Bhagyalakshmi, S.; Sampath, S. J. Colloid Interface Sci. 2004, 274, 95.
(16) Stankovich, S.; Dikin, A. D.; Piner, D. R.; Kohlhaas, A. K.; Kleinhammes, A.; Jia, Y. Y.; Wu, Y.; Nguyen, T. S.; Ruoff, S. R. Carbon 2007, 45, 1558.
(17) Yang, Y. H.; Sun, H. J.; Peng, T. J. Chin. J. Inorg. Chem. 2010, 26, 2083.
[杨勇辉, 孙红娟, 彭同江. 无机化学学报, 2010, 26, 2083.]
(18) Stankovich, S.; Piner, D. R.; Chen, X. Q.; Wu, N. Q.; Nguyen, T. S.; Ruoff, S. R. J. Mater. Chem. 2006, 16, 155.
(19) Yang, D. X.; Velamakanni, A.; Bozoklu, G.; Park, S.; Stoller, M.; Piner, D. R.; Stankovich, S.; Jung, I.; Field, A. D.; Ventrice, A. C.; Ruoff, S. R. Carbon 2009, 47, 145.
(20) Hu, W. B.; Peng, C.; Luo, W. J.; Lv, M.; Li, X. M.; Li, D.; Huang, Q.; Fan, C. H. ACS Nano 2010, 4, 4317.
(21) Dikin, D. A.; Stankovich, S.; Zimney, E. J.; Piner, D. R.; Dommett, H. B.; Guennadi, E.; Nguyen, T. S.; Ruoff, S. R. Nature 2007, 448, 457.
(22) Chen, C. M.; Yang, Y. G.; Wen, Y. F.; Yang, Q. H.; Wang, M. Z. New Carbon Materials 2008, 24, 345.
[陈成猛, 杨永岗, 温月芳, 杨金红, 王茂章. 新型炭材料, 2008, 24, 345.]
(23) Hummers, W. S.; Offeman, R. E. J. Am. Chem. Soc. 1958, 80, 1339.
(24) He, H. Y.; Klinowski, J.; Forster, M.; Lerf, A. Chem. Phys. Lett. 1998, 287, 53.
(25) Pan, Z. L.; Wan, P. Application Mineralogy; Wuhan University of Technology Press: Wuhan, 1993; pp 209-211.
[潘兆橹, 万 朴. 应用矿物学. 武汉: 武汉工业大学出版社, 1993: 209-211.]
(26) Titelman, G. I.; Gelman, V.; Bron, S.; Khalfin, R. L.; Cohen, Y.; Bianco-Peled, H. Carbon 2005, 43, 641.
(27) Mermoux, M.; Chabre, Y.; Rousseau, A. Carbon 1991, 29, 469.
(28) Singh, V. K.; Patra,M. K.; Manoth, M.; Gowd, G. S.; Vadera, S. R.; Kumar, N. New Carbon Materials 2009, 24, 147.
(29) Ferrari, C. A.; Robertson, J. Raman Spectroscopy in Carbons: from Nanotubes to Diamond; Chemical Industry Press: Beijing, 2007; pp 193-204; translated by Tan, P. H., Li, F., Cheng, H. M.
[Ferrari, C. A.; Robertson, J. 碳材料的拉曼光谱—从纳米管到金刚石. 谭平恒, 李 峰, 成会明, 译. 北京: 化学工业出版社, 2007: 193-204.]
(30) Ferrari, A. C.; Robertson, J. Phys. Rev. B 2000, 61, 14095.
(31) Yang, X. G.; Wu, Q. L. Raman Spectroscopy Analysis and Application; National Defense Industry Press: Beijing, 2008; pp 210-220.
[杨序纲, 吴琪琳. 拉曼光谱的分析与应用. 北京: 国防工业出版社, 2008: 210-220.]

[1] 胡奇,金传洪. 透射电子显微镜下原位观察石墨烯液体池中水的辐解和凝结[J]. 物理化学学报, 2019, 35(1): 101-107.
[2] 李乔丹,李永,唐佳宁,崔晓莉. 氢取代石墨单炔的机械化学合成及其电催化特性[J]. 物理化学学报, 2018, 34(9): 1080-1087.
[3] 神祥艳,何建江,王宁,黄长水. 石墨炔在电化学储能器件中的应用[J]. 物理化学学报, 2018, 34(9): 1029-1047.
[4] 卢秀利,韩莹莹,鲁统部. 石墨炔结构表征及在光电催化反应中的应用[J]. 物理化学学报, 2018, 34(9): 1014-1028.
[5] 陈彦焕,李教富,刘辉彪. 石墨炔-有机共轭分子复合材料的制备及其储锂性能[J]. 物理化学学报, 2018, 34(9): 1074-1079.
[6] 黄志娟,喻志农,李言,王吉政. 石墨炔修饰的ZnO薄膜紫外探测器[J]. 物理化学学报, 2018, 34(9): 1088-1094.
[7] 周劲媛,张锦,刘忠范. 石墨双炔的合成方法[J]. 物理化学学报, 2018, 34(9): 977-991.
[8] 李勇军,李玉良. 石墨炔的化学修饰及功能化[J]. 物理化学学报, 2018, 34(9): 992-1013.
[9] 奚晋扬,中村悠马,赵天琦,王冬,帅志刚. 石墨炔与锡烯层状体系的形变势和电声耦合及载流子传输理论研究[J]. 物理化学学报, 2018, 34(9): 961-976.
[10] 陈熙,张胜利. 基于3d元素掺杂的石墨二炔分子传感材料性能调控[J]. 物理化学学报, 2018, 34(9): 1061-1073.
[11] 赵亚松,张丽娟,齐健,金泉,林凯峰,王丹. 石墨二炔及其电子转移增强特性[J]. 物理化学学报, 2018, 34(9): 1048-1060.
[12] 宁汇,王文行,毛勤虎,郑诗瑞,杨中学,赵青山,吴明铂. 1-辛基-3-甲基咪唑功能化石墨片负载氧化亚铜催化二氧化碳电还原制乙烯[J]. 物理化学学报, 2018, 34(8): 938-944.
[13] 谢安,王芝,吴荞宇,程丽萍,骆耿耿,孙頔. 夹心三明治结构的二十五核银硫簇合物[Ag25(SC6H4Pri)18 (dppp)6](CF3SO3)7·CH3CN:结构表征及光学性能[J]. 物理化学学报, 2018, 34(7): 776-780.
[14] 郑有坤,姜晖,王雪梅. 多策略可控合成原子精度合金纳米团簇[J]. 物理化学学报, 2018, 34(7): 740-754.
[15] 韩雪,杨进,刘莹莹,马建方. 三氮唑取代杯[4]芳烃配位聚合物的合成与荧光性能[J]. 物理化学学报, 2018, 34(5): 476-482.