物理化学学报 >> 2011, Vol. 27 >> Issue (06): 1493-1500.doi: 10.3866/PKU.WHXB20110610

催化和表面科学 上一篇    下一篇

Na促进的CuCoMn催化剂催化生物质合成气合成高醇

叶同奇1, 张朝霞1, 徐勇1, 颜世志1, 朱九方1, 刘勇2, 李全新1   

  1. 1. 中国科学技术大学化学物理系, 生物质洁净能源安徽省重点实验室, 合肥 230026;
    2. 合肥天焱绿色能源开发有限公司, 合肥 230026
  • 收稿日期:2011-01-20 修回日期:2011-04-01 发布日期:2011-05-31
  • 通讯作者: 李全新 E-mail:liqx@ustc.edu.cn
  • 基金资助:

    国家自然科学基金(50772107), 国家重点基础研究发展规划(973) (2007CB210206)及国家高技术研究发展计划(863) (2009AA05Z435)资助项目

Higher Alcohol Synthesis from Bio-Syngas over Na-Promoted CuCoMn Catalyst

YE Tong-Qi1, ZHANG Zhao-Xia1, XU Yong1, YAN Shi-Zhi1, ZHU Jiu-Fang1, LIU Yong2, LI Quan-Xin1   

  1. 1. Anhui Key Laboratory of Biomass Clean Energy, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, P. R. China;
    2. Hefei Tianyan Green Energy Development Co., Ltd., Hefei 230026, P. R. China
  • Received:2011-01-20 Revised:2011-04-01 Published:2011-05-31
  • Contact: LI Quan-Xin E-mail:liqx@ustc.edu.cn
  • Supported by:

    The project was supported by the National Natural Science Foundation of China (50772107), National Key Basic Research Program of China (973) (2007CB210206) and National High-Tech Research and Development Program of China (863) (2009AA05Z435).

摘要:

研究钠促进的CuCoMn催化剂的特性及其在生物质气化合成气合成高醇中的应用. 研究了催化剂中Na含量及合成条件(温度、压力和空速)对生物质基合成气合成高醇性能的影响. 发现CuCoMnNa0.1催化剂较适合高醇合成, 在300 °C以下, 随着温度的上升, 碳转化率增大, 而醇选择性降低. 压力的增加有利于醇的合成, 增大空速会明显降低碳转化率, 但醇时空产率则因转换频率的增加而增大. 在所考察的范围内, 醇产率最高达到304.6 g·kg-1·h-1, 其中C2+高醇(C2-C6醇)占64.4% (w, 质量分数). 醇产物和烃产物均符合ASF (Anderson- Schulz-Flory)分布关系. 根据催化剂性能与表征分析, Na的加入有利于提高生物质气化合成气合成高醇的选择性和活性元素Cu、Co的分散性. X射线光电子谱(XPS)测试结果显示反应后的催化剂表面上, Cu以Cu+和Cu0的混合形式存在, 而Co则是Co2+/Co3+和Co0的混合物. 增加Na的含量, Cu0/Cu+比率和Co0的强度均随之减小.

关键词: 生物质, 生物质合成气, 高醇, ASF分布, CuCoMnNa催化剂

Abstract:

Na-promoted CuCoMn catalysts were successfully applied to the highly efficient production of higher alcohols from bio-syngas, which was derived from biomass gasification. The influence of Na content and synthesis conditions (temperature, pressure, and gas hourly space velocity (GHSV)) on higher alcohol synthesis was investigated. The CuCoMnNa0.1 catalyst gave the best performance for higher alcohol synthesis. Carbon conversion increased significantly with an increase in temperature at lower than 300 °C but alcohol selectivity showed an opposite trend. A higher pressure was found to be beneficial for higher alcohol synthesis. Increasing the GHSV reduced carbon conversion but increased the yield of higher alcohols. The maximum higher alcohol yield that was derived from bio-syngas was 304.6 g·kg-1·h-1 with the C2+ alcohols (C2-C6 higher alcohols) of 64.4% (w, mass fraction) under the conditions used. The distributions of the alcohols and the hydrocarbons were consistent with Anderson-Schulz-Flory (ASF) plots. Adding Na to the CuCoMn catalysts led to an increase in the selectivity toward the higher alcohols and promoted the dispersion of the active elements, copper and cobalt. X-ray photoelectron spectroscopy (XPS) results suggested that Cu was present as a mixture of Cu+ and Cu0 on the catalyst′s surface after use and Co was present as a mixture of Co2+/Co3+ and Co0. With an increase in sodium addition the Cu0/Cu+ ratio and the Co0 intensity both decreased.

Key words: Biomass, Bio-syngas, Higher alcohol, ASF distribution, CuCoMnNa catalyst

MSC2000: 

  • O643