物理化学学报 >> 2011, Vol. 27 >> Issue (06): 1372-1378.doi: 10.3866/PKU.WHXB20110626

理论与计算化学 上一篇    下一篇

葡萄糖水溶液氢键结构和动力分析

陈聪, 李维仲, 宋永臣, 翁林岽   

  1. 大连理工大学海洋能源利用与节能教育部重点实验室, 辽宁 大连 116024
  • 收稿日期:2011-03-31 修回日期:2011-04-12 发布日期:2011-05-31
  • 通讯作者: 陈聪 E-mail:congchen@dlut.edu.cn
  • 基金资助:

    国家自然科学基金重点项目(50736001)和教育部中央高校基本科研业务费专项资金(DUT11NY01)资助

Structure and Kinetics of Hydrogen Bonds in Aqueous Glucose Solutions

CHEN Cong, LI Wei-Zhong, SONG Yong-Chen, WENG Lin-Dong   

  1. Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116024, Liaoning Province, P. R. China
  • Received:2011-03-31 Revised:2011-04-12 Published:2011-05-31
  • Contact: CHEN Cong E-mail:congchen@dlut.edu.cn
  • Supported by:

    The project was supported by the Key Program Project of National Natural Science Foundation of China (50736001) and Fundamental Research Funds for the Central Universities, China (DUT11NY01).

摘要:

利用分子动力学模拟方法研究了不同浓度下葡萄糖水溶液的氢键结构和氢键生存周期. 分析了参与i个氢键(分子内、分子间、所有类型)的葡萄糖分子和水分子的百分比分布. 研究发现存在一个特征数N, 参与N个氢键的分子的比例最高, 当i<N时, 参与i个氢键的分子的比例随着浓度的增加而增加; i>N时, 参与i个氢键的分子的比例随着浓度的增加而减小. 还分析了不同类型氢键(葡萄糖分子内、葡萄糖分子间、水分子间、葡萄糖分子与水分子间、所有类型)的连续和截断自相关函数, 并计算了对应的氢键生存周期.

关键词: 分子动力学模拟, 氢键, TIP3P模型, 低温保护剂

Abstract:

Hydrogen bonding structure and kinetics in aqueous glucose solutions with different concentrations were studied using the molecular dynamics simulation method. The percentage distributions of glucose and water molecules with i hydrogen bonds (intra, inter, or both) were analyzed. We find that a critical number N exists and the percentage of glucose or water molecules with N hydrogen bonds is the highest. When i<N, the percentage of glucose or water molecules with i hydrogen bonds increases as the glucose concentration increases, while when i>N the percentage of glucose or water molecules with i hydrogen bonds decreases as the glucose concentration increases. Continuous and intermittent autocorrelation functions for the different hydrogen bonds (intra-hydrogen bonds in the glucose molecules, hydrogen bonds between glucose molecules, hydrogen bonds between the water molecules, hydrogen bonds between the glucose and water molecules, and all hydrogen bonds) and the hydrogen bond lifetimes were also calculated.

Key words: Molecular dynamics simulation, Hydrogen bond, TIP3P model, Cryoprotective agent

MSC2000: 

  • O642