物理化学学报 >> 2012, Vol. 28 >> Issue (02): 324-330.doi: 10.3866/PKU.WHXB201112061

理论与计算化学 上一篇    下一篇

Cu掺杂MgF2晶体的电子结构及光学特性

张治宇1,2, 韩培德1,2, 张彩丽1,2, 张雪1,2, 孙向雷1,2, 李玉平1   

  1. 1. 太原理工大学材料科学与工程学院, 太原 030024;
    2. 太原理工大学新材料界面科学与工程教育部重点实验室, 太原 030024
  • 收稿日期:2011-07-20 修回日期:2011-11-16 发布日期:2012-01-11
  • 通讯作者: 韩培德, 李玉平 E-mail:hanpeide@tyut.edu.cn, hanpeide@126.com; liyuping@tyut.edu.cn
  • 基金资助:

    国家自然科学基金(50874079, 51002102)和太原市科技项目(100115105)资助

Electronic Structures and Optical Properties of Cu:MgF2 Crystal

ZHANG Zhi-Yu1,2, HAN Pei-De1,2, ZHANG Cai-Li1,2, ZHANG Xue1,2, SUN Xiang-Lei1,2, LI Yu-Ping1   

  1. 1. College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China;
    2. Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, P. R. China
  • Received:2011-07-20 Revised:2011-11-16 Published:2012-01-11
  • Contact: HAN Pei-De, LI Yu-Ping E-mail:hanpeide@tyut.edu.cn, hanpeide@126.com; liyuping@tyut.edu.cn
  • Supported by:

    The project was supported by the National Natural Science Foundation of China (50874079, 51002102) and Taiyuan Science and Technology Project, China (100115105).

摘要: 基于密度泛函理论(DFT)的第一性原理平面波超软赝势方法, 计算了纯的MgF2晶体和掺杂不同原子分数(2.08%, 4.16%, 6.24%)Cu 的MgF2晶体结构、电学性质以及光学性质. 结果表明: Cu的掺入导致MgF2晶体禁带宽度逐渐变窄, 并且Cu掺杂使得MgF2晶体折射率和吸收峰增加, 特别是在4 eV附近区域出现了新吸收峰. 同时也给出了引起体系性质变化的物理机制, Cu掺杂MgF2晶体在光电化学方面有着潜在的应用价值.

关键词: 密度泛函理论, 电子结构, 光学特性, Cu, 掺杂, MgF2

Abstract: Based on the density functional pseudopotential method, the geometries, electronic structures, and optical properties of MgF2 with different atomic fractions of Cu doping (2.08%, 4.16%, and 6.24%) are compared in detail. Cu substitution of the Mg sites induces an effective reduction of the band gap of MgF2; and the band gap is continuously reduced with increasing Cu doping level. Also, the calculations show that the refractive index and absorption increase with increasing Cu doping. More importantly, an absorption around 4 eV is found. The mechanisms of this transition in the doped and undoped materials are discussed. The Cu doped MgF2 system could be a potential candidate for photoelectrochemical applications.

Key words: Density functional theory, Electronic structure, Optical property, Cu, Dope, MgF2

MSC2000: 

  • O641