Please wait a minute...
物理化学学报  2012, Vol. 28 Issue (11): 2745-2753    DOI: 10.3866/PKU.WHXB201208221
材料物理化学     
氮掺杂石墨烯的制备及其超级电容性能
苏鹏1, 郭慧林1, 彭三1, 宁生科2
1 合成与天然功能分子化学教育部重点实验室, 西北大学化学与材料科学学院, 西安710069;
2 西安工业大学工业中心, 西安 710021
Preparation of Nitrogen-Doped Graphene and Its Supercapacitive Properties
SU Peng1, GUO Hui-Lin1, PENG San1, NING Sheng-Ke2
1 Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry and Materials Science, Northwest University, Xi’an 710069, P. R. China;
2 Industry Training Center, Xi’an Technological University, Xi’an 710021, P. R. China
 全文: PDF(2472 KB)   输出: BibTeX | EndNote (RIS) |
摘要:

以氧化石墨烯(GO)为原料, 尿素为还原剂和氮掺杂剂, 采用水热法合成了氮掺杂石墨烯. 利用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、傅里叶变换红外(FTIR)光谱、X 射线衍射(XRD)、X 射线光电子能谱(XPS)、氮气吸脱附分析、电导率和电化学测试对样品的形貌、结构、组成以及电化学性质进行表征. 结果表明:水热条件下尿素能有效地化学还原GO并对其进行氮掺杂; 通过调节原料与掺杂剂的质量比, 可以得到不同氮掺杂含量的石墨烯, 氮元素含量范围为5.47%-7.56% (原子分数); 在6 mol·L-1的KOH电解液中, 氮元素含量为7.50%的掺杂石墨烯的超级电容性能最优, 即在3 A·g-1电流密度下首次恒流充放电比电容可达184.5 F·g-1, 经1200次循环后的比电容为161.7 F·g-1, 电容保持率为87.6%.

关键词: 石墨烯氮掺杂尿素水热法超级电容器    
Abstract:

Nitrogen-doped graphene was synthesized by the hydrothermal method with graphene oxide (GO) as the raw material and urea as the reducing-doping agent. The morphology, structure, and components of the as-produced graphene were characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, nitrogen adsorption-desorption analysis, and electrical conductivity measurements. The results showed that nitrogen was doped into the graphene plane at the same time as the GO sheets were reduced, and the nitrogen content was between 5.47%-7.56% (atomic fraction). In addition, the electrochemical performance of the graphene was tested. Nitrogen-doped graphene with a nitrogen content of 7.50% showed excellent capacitive behavior and long cycle life. The first cycle specific discharge capacitance for the material was 184.5 F·g-1 when cycled at 3 A·g-1, and 12.4% losses were found after 1200 cycles in anaqueous electrolyte of 6 mol·L-1 KOH.

Key words: Graphene    Nitrogen doped    Urea    Hydrothermal method    Supercapacitor
收稿日期: 2012-05-29 出版日期: 2012-08-22
中图分类号:  O646  
基金资助:

陕西省教育厅专项研究计划(09JK747)资助

通讯作者: 郭慧林     E-mail: hlguo@nwu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
苏鹏
郭慧林
彭三
宁生科

引用本文:

苏鹏, 郭慧林, 彭三, 宁生科. 氮掺杂石墨烯的制备及其超级电容性能[J]. 物理化学学报, 2012, 28(11): 2745-2753, 10.3866/PKU.WHXB201208221

SU Peng, GUO Hui-Lin, PENG San, NING Sheng-Ke. Preparation of Nitrogen-Doped Graphene and Its Supercapacitive Properties. Acta Phys. -Chim. Sin., 2012, 28(11): 2745-2753, 10.3866/PKU.WHXB201208221.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201208221        http://www.whxb.pku.edu.cn/CN/Y2012/V28/I11/2745

(1) Pandolfo, A. G.; Hollenkamp, A. F. J. Power Sources 2006, 157,11. doi: 10.1016/j.jpowsour.2006.02.065
(2) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.;Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A.Science 2004, 306, 666. doi: 10.1126/science.1102896
(3) Geim, A. K.; Novoselov, K. S. Nat. Mater. 2007, 6, 183. doi: 10.1038/nmat1849
(4) Katsnelson, M. I. Mater. Today 2007, 10 (1-2), 20.
(5) Park, S.; Ruoff, R. S. Nat. Nanotechnol. 2009, 4, 217. doi: 10.1038/nnano.2009.58
(6) Hu, Y. J.; Jin, J.; Zhang, H.;Wu, P.; Cai, C. X. Acta Phys. -Chim. Sin. 2010, 26, 2073. [胡耀娟, 金娟, 张卉, 吴萍, 蔡称心. 物理化学学报, 2010, 26, 2073.] doi: 10.3866/PKU.WHXB20100812
(7) Wei, D. C.; Liu, Y. Q.;Wang, Y.; Zhang, H. L.; Huang, L. P.; Yu,G. Nano Lett. 2009, 9, 1752. doi: 10.1021/nl803279t
(8) Qu, L. T.; Liu, Y.; Baek, J.-B.; Dai, L. M. ACS Nano 2010, 4,1321. doi: 10.1021/nn901850u
(9) Meyer, J. C.; Kurasch, S.; Park, H. J.; Skakalova, V.; Kunzel,D.; Groβ, A.; Chuvilin A.; Algara-Siller, G.; Roth, S.; Iwasaki,T.; Starke, U.; Smet, J. H.; Kaiser, U. Nat. Mater. 2011, 10, 209.doi: 10.1038/nmat2941
(10) Jeong, H. M.; Lee, J.W.; Shin,W. H.; Choi, Y. J.; Shin, H. J.;Kang, J. K.; Choi, J.W. Nano Lett. 2011, 11, 2472. doi: 10.1021/nl2009058
(11) Shao, Y. Y.; Zhang, S.; Engelhard, M. H.; Li, G. S.; Shao, G. C.;Wang, Y.; Liu, J.; Aksay, I. A.; Lin, Y. H. J. Mater. Chem. 2010,20, 7491. doi: 10.1039/c0jm00782j
(12) Wang, Y.; Shao, Y. Y; Matson, D.W.; Li, J. H.; Lin, Y. H. ACS Nano 2010, 4, 1790. doi: 10.1021/nn100315s
(13) Li, N.;Wang, Z. Y.; Zhao, K. K.; Shi, Z. J.; Gu, Z. N.; Xu, S. K.Carbon 2010, 48, 255. doi: 10.1016/j.carbon.2009.09.013
(14) Panchokarla, L. S.; Subrahmanyam, K. S.; Saha, S. K.;Govindaraj, A.; Krisnamurthy, H. R.;Waghmare, U. V.; Rao, C.N. R. Adv. Mater. 2009, 21, 4726. doi: 10.1002/adma.200901335
(15) Wang, X. R.; Li, X. L.; Zhang, L.; Yoon, Y.;Weber, P. K.;Wang,H. L.; Guo, J.; Dai, H. J. Science 2009, 324, 768. doi: 10.1126/science.1170335
(16) Guo, B. D.; Liu, Q.; Chen, E. D.; Zhu, H.W.; Fang, L.; Gong, J.R. Nano Lett. 2010, 10, 4975. doi: 10.1021/nl103079j
(17) Sheng, Z. H.; Shao, L.; Chen, J. J.; Bao,W. J.;Wang, F. B.; Xia,X. H. ACS Nano 2011, 5, 4350. doi: 10.1021/nn103584t
(18) Li, X. L.;Wang, H. L.; Robinson, J. T.; Sanchez, H.; Diankov,G.; Dai, H. J. J. Am. Chem. Soc. 2009, 131, 15939. doi: 10.1021/ja907098f
(19) Jin, Z.; Yao, J.; Kittrell, C.; Tour, J. M. ACS Nano 2011, 5, 4112.doi: 10.1021/nn200766e
(20) Reddy, A. L. M.; Srivastava, A.; Gowda, S. R.; Gullapalli, H.;Dubey, M.; Ajayan, P. M. ACS Nano 2010, 4, 6337. doi: 10.1021/nn101926g
(21) Qian,W.; Cui, X.; Hao, R.; Hou, Y. L.; Zhang, Z. Y. ACS Appl. Mater. Interfaces 2011, 3, 2259. doi: 10.1021/am200479d
(22) Mou, Z. G.; Chen, X. Y.; Du, Y. K.;Wang, X. M.; Yang, P.;Wang, S. D. Appl. Surf. Sci. 2011, 258, 1704. doi: 10.1016/j.apsusc.2011.10.019
(23) Sun, L.;Wang, L.; Tian, C. G.; Tan, T. X.; Xie, Y.; Shi, K. Y.; Li,M. T.; Fu, H. G. RSC Adv. 2012, 2, 4498. doi: 10.1039/c2ra01367c
(24) Wakeland, S.; Martinez, R.; Grey, J. K.; Luhrs, C. C. Carbon2010, 48, 3463. doi: 10.1016/j.carbon.2010.05.043
(25) Kovtyukhova, N. I.; Ollivier, P. J.; Martin, B. R.; Mallouk, T. E.;Chizhik, S. A.; Buzaneva, E. V.; Gorchinskiy, A. D. Chem. Mater. 1999, 11, 771. doi: 10.1021/cm981085u
(26) Hummers,W. S.; Offeman, R. E. J. Am. Chem. Soc. 1958, 80,1339. doi: 10.1021/ja01539a017
(27) Xue, L. P.; Zheng, M. B.; Shen, C. F.; Lü, H. L.; Li, N.W.; Pan,L. J.; Cao, J. M. Chin. J. Inorg. Chem. 2010, 26, 1375. [薛露平, 郑明波, 沈辰飞, 吕洪岭, 李念武, 潘力佳, 曹洁明. 无机化学学报, 2010, 26, 1375.]
(28) Hontoria-Lucas, C.; Lopez-Peinado, A. J.; Lopez-Gonzalez, J.D.; Rojas-Cervantes, M. L.; Martin-Aranda, R. M. Carbon1995, 33, 1585. doi: 10.1016/0008-6223(95)00120-3
(29) Guo, H. L.;Wang, X. F.; Qian, Q. Y.;Wang, F. B.; Xia, X. H.ACS Nano 2009, 3, 2653. doi: 10.1021/nn900227d
(30) Liu, Z. H.;Wang, Z. M.; Yang, X. J.; Ooi, K. Langmuir 2002,18, 4926. doi: 10.1021/la011677i
(31) Chen, Y.; Zhang, X.; Yu, P.; Ma, Y.W. J. Power Sources 2010,195, 3031. doi: 10.1016/j.jpowsour.2009.11.057

[1] 杨化超, 薄拯, 帅骁睿, 严建华, 岑可法. 润湿特性对超级电容器储能动力学的影响机理[J]. 物理化学学报, 2019, 35(2): 200-207.
[2] 胡奇,金传洪. 透射电子显微镜下原位观察石墨烯液体池中水的辐解和凝结[J]. 物理化学学报, 2019, 35(1): 101-107.
[3] 神祥艳,何建江,王宁,黄长水. 石墨炔在电化学储能器件中的应用[J]. 物理化学学报, 2018, 34(9): 1029-1047.
[4] 陈彦焕,李教富,刘辉彪. 石墨炔-有机共轭分子复合材料的制备及其储锂性能[J]. 物理化学学报, 2018, 34(9): 1074-1079.
[5] 陈克,孙振华,方若翩,李峰,成会明. 锂硫电池用石墨烯基材料的研究进展[J]. 物理化学学报, 2018, 34(4): 377-390.
[6] 孙成珍,白博峰. 气体分子在二维石墨烯纳米孔中的选择性渗透特性[J]. 物理化学学报, 2018, 34(10): 1136-1143.
[7] 王海燕,石高全. 层状双金属氢氧化物/石墨烯复合材料及其在电化学能量存储与转换中的应用[J]. 物理化学学报, 2018, 34(1): 22-35.
[8] 钱慧慧,韩潇,肇研,苏玉芹. 柔性Pd@PANI/rGO纸阳极在甲醇燃料电池中的应用[J]. 物理化学学报, 2017, 33(9): 1822-1827.
[9] 杜惟实,吕耀康,蔡志威,张诚. 基于三维多孔石墨烯/含钛共轭聚合物复合多孔薄膜的柔性全固态超级电容器[J]. 物理化学学报, 2017, 33(9): 1828-1837.
[10] 田爱华,魏伟,瞿鹏,夏修萍,申琦. SnS2纳米花/石墨烯纳米复合物的一步法合成及其增强的锂离子存储性能[J]. 物理化学学报, 2017, 33(8): 1621-1627.
[11] 杨翼,罗来明,陈迪,刘洪鸣,张荣华,代忠旭,周新文. 石墨烯负载PtPd纳米催化剂的合成及其电催化氧化甲醇性能[J]. 物理化学学报, 2017, 33(8): 1628-1634.
[12] 王雷,于飞,马杰. 石墨烯基电极材料的设计和构建及其在电容去离子中的应用[J]. 物理化学学报, 2017, 33(7): 1338-1353.
[13] 周扬,程庆庆,黄庆红,邹志青,严六明,杨辉. 高分散钴氮共掺杂碳纳米纤维氧还原催化剂[J]. 物理化学学报, 2017, 33(7): 1429-1435.
[14] 陈凡,王中跃,张艳艳,余柯涵,翁丽星,韦玮. 聚丙烯酸功能化高效发光的La1-xEuxF3纳米晶合成及细胞成像[J]. 物理化学学报, 2017, 33(7): 1446-1452.
[15] 王美淞,邹培培,黄艳丽,王媛媛,戴立益. 高活性、可循环的Pt-Cu@3D石墨烯复合催化剂的制备和催化性能[J]. 物理化学学报, 2017, 33(6): 1230-1235.