物理化学学报 >> 2012, Vol. 28 >> Issue (10): 2336-2342.doi: 10.3866/PKU.WHXB201209104

催化和表面科学 上一篇    下一篇

二氨基马来腈共聚合改性氮化碳光催化剂

郑华荣, 张金水, 王心晨, 付贤智   

  1. 福州大学光催化研究所国家重点实验室培育基地, 福州 350002
  • 收稿日期:2012-08-09 修回日期:2012-09-10 发布日期:2012-09-26
  • 通讯作者: 王心晨 E-mail:xcwang@fzu.edu.cn
  • 基金资助:

    国家重点基础研究发展计划(2013CB632405)和国家自然科学基金(21033003,21173043)资助项目

Modification of Carbon Nitride Photocatalysts by Copolymerization with Diaminomaleonitrile

ZHENG Hua-Rong, ZHANG Jin-Shui, WANG Xin-Chen, FU Xian-Zhi   

  1. Research Institute of Photocatalysis, State Key Laboratory Breeding Base of Photocatalysis, Fuzhou University, Fuzhou 350002, P. R. China
  • Received:2012-08-09 Revised:2012-09-10 Published:2012-09-26
  • Supported by:

    The project was supported by the National Basic Research Program of China (973 Program,2013CB632405) and National Natural Science Foundation of China(21033003,21173043).

摘要:

利用二氨基马来腈(DMNA)与二聚氰胺(DCDA)的高温共聚合反应, 制备了石墨相氮化碳 (g-C3N4), 并通过X射线衍射(XRD)、傅里叶变换红外(FT-IR)光谱、透射电镜 (TEM)、氮气吸脱附实验 (N2-sorption)、电子顺磁共振 (EPR)、紫外-可见漫反射光谱 (UV-Vis DRS) 和荧光 (PL) 光谱等表征手段,系统考察了共聚合改性对g-C3N4晶体结构、化学结构、能带结构、织构、光吸收性能和光催化性能等的影响.研究结果表明:共聚合改性后氮化碳材料仍保持石墨相晶体结构, 但其π电子的离域性增强, 并在催化剂表面产生异质结构, 进而提高了氮化碳在可见光区域的光吸收性能, 并促进了光生载流子的有效分离. 性能评价结果显示, DMNA改性的氮化碳在可见光下光催化产氢活性明显高于未改性的样品, 当DMNA用量为0.01g时, 催化剂的产氢速率最高, 达到45.0 μmol·h-1, 为纯氮化碳样品的4.5倍.

关键词: 光催化剂, 太阳能利用, 氢能源, 共聚合, 氮化碳

Abstract:

g-C3N4photocatalysts were synthesized by copolymerization of diaminomaleonitrile (DMNA) with dicyanodiamide (DCDA) at high temperatures. The effect of copolymerization on the crystal structure, chemical structure, band structure, texture, optical property and photocatalytic performance of g-C3N4 was studied by such characterization techniques as X-ray diffraction patterns (XRD), Fourier transformed infrared (FT-IR), transmission electron microscopy (TEM), nitrogen-sorption (N2-sorption),electron paramagnetic resonance (EPR), UV-Vis diffuse reflectance spectra (UV-Vis DSR) and photoluminescence (PL) analyses. Results demonstrated that the graphitic-like layer packing structure of g-C3N4 remained unchanged after the modification; however the copolymerization with DMNA can efficiently extend the delocalizationof π-electrons and induce the formation of surface junctions, greatly enhancing the light-harvesting abilityof g-C3N4 in visible light region and promoting the separation of photogenerated charge carriers, respectively. Photocatalytic performance showed that all DMNA-modified samples presented an enhanced H2 evolution activity under visible light irradiation. The optimized weight-in amount of DMNA is found to be 0.01g, by which the modified sample shows the highest hydrogen evolution rate of 45.0 μmol·h-1. This value is 4.5 times as high as that of the unmodified carbon nitride sample.

Key words: Photocatalyst, Solar energy utilization, Hydrogen fuel, Copolymerization, Carbon nitride

MSC2000: 

  • O641