物理化学学报 >> 2012, Vol. 28 >> Issue (12): 2958-2964.doi: 10.3866/PKU.WHXB201209282

材料物理化学 上一篇    下一篇

快速制备高掺杂CuO/SiO2复合气凝胶

许维维, 杜艾, 唐俊, 陈珂, 邹丽萍, 张志华, 沈军, 周斌   

  1. 同济大学物理系, 上海市特殊人工微结构材料与技术重点实验室, 上海 200092
  • 收稿日期:2012-07-23 修回日期:2012-09-12 发布日期:2012-11-14
  • 通讯作者: 周斌 E-mail:zhoubin863@tongji.edu.cn
  • 基金资助:

    国家自然科学基金(51102184, 51172163), 国家高技术研究发展计划(863), 国家科技支撑计划(2009BAC62B02), 同济大学青年优秀人才培养行动计划(2010KJ068)和教育部博士点基金(20090072110047, 20100072110054)资助项目

Rapid Preparation of Highly Doped CuO/SiO2 Composite Aerogels

XU Wei-Wei, DU Ai, TANG Jun, CHEN Ke, ZOU Li-Ping, ZHANG Zhi-Hua, SHEN Jun, ZHOU Bin   

  1. Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, Physics Department, Tongji University, Shanghai 200092, P. R. China
  • Received:2012-07-23 Revised:2012-09-12 Published:2012-11-14
  • Supported by:

    The project was supported by the National Natural Science Foundation of China (51102184, 51172163), National High Technology Research and Development Program of China (863), National Key Technology Research and Development Program of China (2009BAC62B02), Program for Young Excellent Talents in Tongji University, China (2010KJ068), and Doctoral Fund of Ministry of Education of China (20090072110047, 20100072110054).

摘要:

通过环氧丙烷预反应法, 以乙腈为溶剂快速制备了高掺杂的氧化铜/二氧化硅复合气凝胶. 在典型的合成过程中, 将正硅酸甲酯(TMOS)、乙腈、去离子水和环氧丙烷混合进行预反应, 然后将该溶液与氯化铜的乙腈-水溶液混合并添加环氧丙烷, 在35℃烘箱中静置0.5 h 后转化为湿凝胶, 再经过CO2超临界流体干燥和热处理即可获得黑色块状CuO/SiO2复合气凝胶. 最终气凝胶样品密度约为180 mg·cm-3, 比表面积高达625 m2·g-1, 平均掺杂比为19.91%±2.42% (Cu:Si 摩尔比), 压缩模量为1.639 MPa, 具有成型性好、分散均匀等优点,是良好的背光源靶材料. 本论文还通过对比实验对凝胶化过程的机理进行分析, 结果表明, 通过改变溶剂和采用环氧丙烷预催化均衡了两种不同前驱体的反应速率, 实现了共凝胶的目的. 此外, 该方法还有望为其它金属氧化物/二氧化硅复合气凝胶的制备提供新思路.

关键词: 预反应, 高掺杂, 氧化铜, 复合气凝胶, 环氧丙烷, 共凝胶

Abstract:

Highly doped CuO/SiO2 composite aerogels were prepared via a propylene oxide pre-reaction method with acetonitrile as solvent. In a typical synthesis process, tetramethoxysilane (TMOS), acetonitrile, deionized water, and propylene oxide were mixed together for pre-reaction. The solutions were then mixed with a CuCl2 acetonitrile-water solution, with added propylene oxide. The mixed solutions were transformed to the wet gels after being kept in the oven for 0.5 h at 35℃. The dark monolithic CuO/SiO2 composite aerogels were obtained after drying with supercritical CO2 and following thermal treatment. The density, specific surface area, average doping concentration, and compression modulus of the final aerogel samples were about 180 mg·cm-3, 625 m2·g-1, 19.91%± 2.42% (Cu:Si molar ratio), and 1.639 MPa, respectively. The aerogels, which were ideal materials for backlight targets, featured good formability and uniform dispersion. The gelation mechanism was also discussed by comparing our typical synthetic process with reference experiments. The results demonstrated that the reaction rates of the two precursors were balanced by changing the solvent and using the propylene oxide pre-reaction method, which realized the co-gelation. In addition, the method may inspire new synthetic ideas for preparation of other metal-oxide/silica composite aerogels.

Key words: Pre-reaction, Highly doping, Copper oxide, Composite aerogel, Propylene oxide, Co-gelation

MSC2000: 

  • O648