物理化学学报 >> 2012, Vol. 28 >> Issue (01): 44-50.doi: 10.3866/PKU.WHXB20122844

理论与计算化学 上一篇    下一篇

CO在金属掺杂TiO2纳米管阵列中的吸附及氧化

董华青, 潘西, 谢琴, 孟强强, 高建荣, 王建国   

  1. 浙江工业大学化学工程与材料学院, 杭州 310014
  • 收稿日期:2011-09-06 修回日期:2011-10-10 发布日期:2011-12-29
  • 通讯作者: 王建国 E-mail:jgw@zjut.edu.cn
  • 基金资助:

    国家自然科学基金(20906081)和浙江省自然科学基金(R4110345)资助项目

CO Adsorption and Oxidation on Metal-Doped TiO2 Nanotube Arrays

DONG Hua-Qing, PAN Xi, XIE Qin, MENG Qiang-Qiang, GAO Jian-Rong, WANG Jian-Guo   

  1. College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China
  • Received:2011-09-06 Revised:2011-10-10 Published:2011-12-29
  • Contact: WANG Jian-Guo E-mail:jgw@zjut.edu.cn
  • Supported by:

    The project was supported by the National Natural Science Foundation of China (20906081) and Natural Science Foundation of Zhejiang Province, China (R4110345).

摘要: 采用密度泛函理论(DFT)研究了五种不同金属元素V、Cr、Pd、Pt、Au 掺杂二氧化钛纳米管阵列(TNTAs)的性质以及CO在这些二氧化钛纳米管阵列中的吸附和氧化. 结果表明: 金属的掺杂使TNTAs的带隙减小; 弱吸附的CO能够和二氧化钛纳米管阵列中的晶格氧通过氧化还原机理生成CO2, 这可归因于纳米管阵列的限域效应和金属元素的掺杂. 合适的金属掺杂能促进CO氧化, 除Cr 以外的金属元素的掺杂降低了CO氧化的活化能垒, 特别是Pd或Au的掺杂使能垒降低最为明显. 贵金属元素Pd或Au掺杂TiO2纳米管阵列具有优良的光催化性能, 可用于CO的低温氧化催化剂.

关键词: 密度泛函理论, 二氧化钛纳米管阵列, 一氧化碳氧化

Abstract: Density functional theory (DFT) calculations were used to investigate the structural and electronic properties of V-, Cr-, Pd-, Pt-, and Au-doped titania nanotube arrays (TNTAs) where Ti was replaced by dopants. The adsorption of CO and the formation of CO2 on these various nanotube arrays were also studied in detail. We found that CO physisorbed weakly inside the TNTAs and CO was oxidized by lattice oxygen to form CO2 by the redox mechanism. This may thus be attributed to the unique confinement effect and to different metal doping. All the metal doped systems except the Cr-TNTAs showed a lower activation energy barrier than the undoped TNTAs, indicating that proper metal dopants can promote CO oxidation. The reaction on the Pd- or Au-doped TNTAs had the lowest barrier. Therefore, we found that Pd- or Au-doped TNTAs led to enhanced catalytic activity for CO oxidation at low temperatures.

Key words: Density functional theory, TiO2 nanotube arrays, CO oxidation

MSC2000: 

  • O641