物理化学学报 >> 2013, Vol. 29 >> Issue (08): 1666-1672.doi: 10.3866/PKU.WHXB201304232

理论与计算化学 上一篇    下一篇

石墨烯和硼氮类石墨烯对LiFePO4表面结构的改进及其电导的促进作用

孙超, 严六明, 岳宝华   

  1. 上海大学理学院化学系, 上海 200444
  • 收稿日期:2013-01-29 修回日期:2013-04-22 发布日期:2013-07-09
  • 通讯作者: 严六明 E-mail:liuming.yan@shu.edu.cn
  • 基金资助:

    国家自然科学基金项目(21073118); 上海市教育委员会科研创新项目(13ZZ078); 上海市重点学科计划(J50101)和上海市高等教育内涵建设“085”工程《材料基因工程》项目资助

Improvement of Surface Structure and Enhancement of Conductivity of LiFePO4 Surface by Graphene and Graphene-Like B-C-N Coating

SUN Chao, YAN Liu-Ming, YUE Bao-Hua   

  1. Department of Chemistry, College of Sciences, Shanghai University Shanghai 200444, P. R. China
  • Received:2013-01-29 Revised:2013-04-22 Published:2013-07-09
  • Contact: YAN Liu-Ming E-mail:liuming.yan@shu.edu.cn
  • Supported by:

    The project was supported by the National Natural Science Foundation of China (21073118), Innovation Program of Shanghai Municipal Education Commission, China (13ZZ078), Shanghai Leading Academic Discipline Project, China (J50101), and Shanghai Higher Education Connotation Construction“085”Project“Materials Genome Engineering”, China.

摘要:

利用密度泛函理论研究石墨烯和硼氮类石墨烯包覆对LiFePO4 (010)表面结构和电导性质的影响. 结果表明包覆层和LiFePO4 (010)表面之间的相互作用可以改善LiFePO4 (010)表面的电导性能. 石墨烯包覆LiFePO4 (010)表面后, 禁带宽度从3.3 eV减小到2.1 eV. 硼氮类石墨烯包覆LiFePO4 (010)表面后, 虽然其价带顶和导带底仍由Fe的3d轨道贡献, 但禁带中出现两个间隔为0.6 eV的带隙态, 由硼氮类石墨烯与LiFePO4(010)表面有直接接触并形成共价键的B原子和N原子贡献.

关键词: LiFePO4, 石墨烯, 硼氮类石墨烯, 态密度, 密度泛函理论

Abstract:

Density functional theory calculations are used to investigate the surface structure and electric conductivity of the (010) surface of LiFePO4 coated with graphene or graphene-like B-C-N. The calculations indicate that the interaction between the coating and LiFePO4 (010) surface improves the electric conductivity of the LiFePO4 (010) surface. The band gap decreases from 3.3 to 2.1 eV when the LiFePO4 (010) surface is coated with graphene. When the LiFePO4 (010) surface is coated with graphene-like B-C-N, the valence band maximum and conduction band minimum are still dominated by Fe-3d orbitals; however, two in-gap states with an interval of 0.6 eV appear in the band gap, which are attributed to the bonding interaction between graphene-like B-C-N and the LiFePO4 (010) surface.

Key words: LiFePO4, Graphene, Graphene-like B-C-N, Density of states, Density functional theory

MSC2000: 

  • O641