物理化学学报 >> 2013, Vol. 29 >> Issue (10): 2071-2078.doi: 10.3866/PKU.WHXB201304251

热分析动力学和热动力学 上一篇    下一篇

2,2,2-三硝基乙基-N-硝基甲胺的热安全性

胡荣祖1,3, 赵凤起1, 高红旭1, 马海霞2, 张海3, 徐抗震2, 赵宏安4, 姚二岗1   

  1. 1 西安近代化学研究所燃烧与爆炸技术重点实验室, 西安 710065;
    2 西北大学化工学院, 西安 710069;
    3 西北大学数学系/数据分析和计算化学研究所, 西安 710069;
    4 西北大学信息科学与工程学院, 西安 710069
  • 收稿日期:2013-01-29 修回日期:2013-04-23 发布日期:2013-09-26
  • 通讯作者: 胡荣祖 E-mail:hurongzu88@163.com
  • 基金资助:

    国家自然科学基金(21173163, 21073141, 11171272)资助项目

Thermal Safety of 2,2,2-Trinitroethyl-N-nitromethyl Amine

HU Rong-Zu1,3, ZHAO Feng-Qi1, GAO Hong-Xu1, MA Hai-Xia2, ZHANG Hai3, Xu Kang-Zhen2, Zhao Hong-An4, YAO Er-Gang1   

  1. 1 Science and Technology on Combustion and Explosion Laboratory, Xi’an Modern Chemistry Research Institute, Xi’an 710065, P. R. China;
    2 College of Chemical Engineering, Northwest University, Xi’an 710069, P. R. China;
    3 Department of Mathematics/Institute of data analysis and computation chemistry, Northwest University, Xi’an 710069, P. R. China;
    4 College of Communication Science and Engineering, Northwest University, Xi’an 710069, P. R. China
  • Received:2013-01-29 Revised:2013-04-23 Published:2013-09-26
  • Contact: HU Rong-Zu E-mail:hurongzu88@163.com
  • Supported by:

    The project was supported by the National Natural Science Foundation of China (21173163, 21073141, 11171272).

摘要:

为评价2,2,2-三硝基乙基-N-硝基甲胺(TNMA)的热安全性, 得到计算TNMA热安全性参数用的基本数据, 用经验式估算了TNMA的比热容(Cp)和热导率(λ). 用键能贡献于生成热Qf的加和法, 估算了TNMA的标准生成焓ΔcHmθ(TNMA, s, 298.15 K). 用热力学公式计算了TNMA的标准燃烧焓ΔUmθ(TNMA, s, 298.15 K)和标准燃烧能ΔcHmθ(TNMA, s, 298.15 K). 用Kamlet-Jacobs 公式估算了爆速、爆压和爆热. 用经验式估算了分解热(Qd). 通过差示扫描量热(DSC)曲线和高灵敏度布鲁顿玻璃薄膜压力计测得的逸出气体标准体积(VH)-时间(t)曲线, 得到了TNMA放热分解反应的动力学参数. 用上述基本数据得到了评价TNMA的热安全性参数: 自加速分解温度(TSADT), 热爆炸临界温度(Tbe0Tbp0), 绝热至爆时间(tTIad), 撞击感度50%落高(H50), 热点起爆临界温度(Tcr), 被300 K环境包围的半厚和半径为1 m的无限大平板、无限长圆柱和球形TNMA的热感度概率密度函数S(T), 相应于S(T)-T关系曲线最大值的峰温(TS(T)max), 安全度(SD), 临界热爆炸环境温度(Tacr)和热爆炸概率(PTE). 结果表明: (1) TNMA有较好的热安全性和对热抵抗能力, 与环三亚甲基三硝胺(RDX)相比, TNMA易从热分解过渡到热爆炸; (2) 不同形状大药量TNMA 热安全性降低的次序为: 球>无限长圆柱>无限大平板; (3)TNMA有高的燃烧能、高的爆轰化学能(爆热)和接近环四亚甲基四硝胺(HMX)的爆炸性能, 其对冲击敏感, 冲击感度与季戊四醇四硝酸酯(PETN)和特屈尔接近, 可用作混合炸药主组分.

关键词: TNMA, 热分解, 热安全性, 热爆炸

Abstract:

To evaluate the thermal safety of 2,2,2-trinitroethyl-N-nitromethyl amine (TNMA), basic data, including specific heat capacity (Cp) and thermal conductivity (λ), were estimated using empirical formulae. The standard enthalpy of formation of TNMA, ΔfHmθ(TNMA, s, 298.15 K), was calculated by an additive method of contributing bond energy to heat of formation Qf, and the standard combustion enthalpy ΔcHmθ(TNMA, s, 298.15 K) and standard combustion energy ΔUmθ (TNMA, s, 298.15 K) and standard combustion energy ΔUmθ (TNMA, s, 298.15 K) were calculated by thermodynamic formulae. The detonation velocity, detonation pressure, and heat of detonation were estimated using the Kamlet-Jacobs equation. The heat of decomposition reaction (Qd) of TNMA was estimated by an empirical formula, and the thermal behavior of TNMA was studied by differential scanning calorimetry (DSC). The kinetic parameters of the exothermic decomposition reaction of TNMA were obtained from analysis of DSC curves and standard volume of gas evolved (VH) vs time (t) curves determined using a highly sensitive Bourdon glass membrane manometer. The parameters used to evaluate the thermal safety of TNMA, such as the self-accelerating decomposition temperature (TSADT), critical temperature of thermal explosion (Tbe and Tbp), adiabatic time-to-explosion (tTIad), 50% drop height (H50) of impact sensitivity, critical temperature of hot-spot initiation (Tcr), thermal sensitivity probability density function S(T) for infinite plate-like, infinite cylindrical and spheroidal TNMAwith half-thickness and radius of 1 m at 300 K, peak temperature corresponding to the maximum value of the S(T) vs T curve (TS(T)max), safety degree (SD), critical thermal explosion ambient temperature (Tacr), and thermal explosion probability (PTE), were obtained by the above-mentioned basic data. Results show that (1) TNMA has better thermal safety and heat-resistent ability; but in comparison with cyclotrimethylenetrinitramine (RDX), the transition from thermal decomposition to thermal explosion of TNMA is easy to take place. (2) The thermal safety of large scale TNMA with different shape decreases in the order: sphere>infinite cylinder>infinite plate. (3) TNMA has high standard combustion energy and high chemical energy (heat) of detonation, and explosion performance level approaching that of HMX. It is sensitive to shock, has impact sensitivity level approaching those of pentaerythritol tetranitrate (PETN) and tetryl and can be used as a main ingredient of composite explosive.

Key words: TNMA, Thermal decomposition, Thermal safety, Thermal explosion

MSC2000: 

  • O641