物理化学学报 >> 2013, Vol. 29 >> Issue (11): 2308-2312.doi: 10.3866/PKU.WHXB201309042

理论与计算化学 上一篇    下一篇

U+与CO2气相反应的密度泛函理论研究

曾秀琳1,2, 黄山奇松2, 居学海2   

  1. 1 淮南师范学院化学与化工系, 安徽 淮南 232001;
    2 南京理工大学化学系, 南京 210094
  • 收稿日期:2013-05-15 修回日期:2013-09-04 发布日期:2013-10-30
  • 通讯作者: 居学海 E-mail:xhju@mail.njust.edu.cn
  • 基金资助:

    国家自然科学基金(21101070)资助项目

Density Functional Theory Study of the Gas-Phase Reaction of U+ with CO2

ZENG Xiu-Lin1,2, HUANG Shan-Qi-Song2, JU Xue-Hai2   

  1. 1 Department of Chemistry and Chemical Engineering, Huainan Normal University, Huainan 232001, Anhui Province, P. R. China;
    2 Department of Chemistry, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
  • Received:2013-05-15 Revised:2013-09-04 Published:2013-10-30
  • Contact: JU Xue-Hai E-mail:xhju@mail.njust.edu.cn
  • Supported by:

    The project was supported by the National Natural Science Foundation of China (21101070).

摘要:

运用密度泛函理论(DFT)中的B3LYP方法,U原子用含相对论有效原子实势(ECP)校正的基组(SDD),C、O原子采用6-311+G(d)基组,对气相中U+和CO2的反应进行了理论研究.通过研究二重和四重自旋态的反应势能面(PESs),优化得到了两条反应路径的反应物、中间体、过渡态和产物的结构.用"两态反应"(TSR)分析反应机理,结果表明体系的优先选择路径为高自旋态进入和低自旋态离开反应,发生在四重态和二重态的自旋多重度的改变使得整个反应系统能以一个低能反应途径进行.

关键词: 反应机理, 密度泛函理论, 相对论有效原子实势, 势能面, 自旋态

Abstract:

The gas-phase reaction of U+ with CO2 was investigated with B3LYP density functional theory (DFT) in conjunction with the relativistic effective core potential (ECP) of the SDD basis sets for Uand the 6-311 + G(d) basis set for C and O. The potential energy surfaces (PESs) of the reaction system were explored in detail for both doublet and quartet spin states. The geometries of reactants, intermediates, transition states, and products in the two reaction pathways were fully optimized. The reaction mechanism was analyzed using"two-state reactivity (TSR)."The calculations demonstrate that the reaction preferentially involves the high-spin state entrance channel and the low-spin state exit channel. The spin multiplicity transition from the quartet state to the doublet state enables the reaction system to find a lower energy pathway.

Key words: Reaction mechanism, Density functional theory, Relativistic effective core potential, Potential energy surface, Spin state

MSC2000: 

  • O641