物理化学学报 >> 2013, Vol. 29 >> Issue (12): 2505-2512.doi: 10.3866/PKU.WHXB201310213

热力学,动力学和结构化学 上一篇    下一篇

微孔聚乳酸支架材料的热稳定性与动态热机械特性

王昉1, 盛沈俊1,2, 郭各朴3, 马青玉4   

  1. 1 南京师范大学分析测试中心, 南京 210023;
    2 南京师范大学化学与材料科学学院, 南京 210023;
    3 南京大学物理学院, 南京 210093;
    4 江苏省光电重点实验室, 南京师范大学物理科学与技术学院, 南京 210023
  • 收稿日期:2013-08-14 修回日期:2013-10-21 发布日期:2013-11-28
  • 通讯作者: 马青玉 E-mail:maqingyu@njnu.edu.cn
  • 基金资助:

    国家自然科学基金(11274176), 江苏省教育厅自然科学基金(09KJD350001)和南京市开放实验室基金(1640703064)资助项目

Thermal Stability and Dynamic Thermal Mechanical Properties of Microcellular Polylactic Acid Scaffolds

WANG Fang1, SHENG Shen-Jun1,2, GUO Ge-Pu3, MA Qing-Yu4   

  1. 1 Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, P. R. China;
    2 School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China;
    3 Physics School, Nanjing University, Nanjing 210093, P. R. China;
    4 Key Laboratory of Optoelectronics of Jiangsu Province, School of Physics and Technology, Nanjing Normal University, Nanjing 210023, P. R. China
  • Received:2013-08-14 Revised:2013-10-21 Published:2013-11-28
  • Contact: MA Qing-Yu E-mail:maqingyu@njnu.edu.cn
  • Supported by:

    The project was supported by the National Natural Science Foundation of China (11274176), Natural Science Foundation of Jiangsu Provincial Department of Education, China (09KJD350001), and Opened-Laboratory Foundation of Nanjing, China (1640703064).

摘要:

采用无溶剂二氧化碳固态发泡技术, 在2.5、3.5、4.0和5.0 MPa饱和压力下制备了泡孔孔径为350-20μm的聚乳酸支架材料. 利用热重分析技术、动态热机械分析技术和扫描电子显微镜技术, 测定了材料的起始分解温度、分解速率、储存/损耗模量和损耗因子等参数, 并利用Kissinger、Ozawa-Doyle 和Vyazovkin 方程进行了热分解动力学计算, 推算了氮气环境下材料的降解时间和使用寿命. 结果表明, 随着发泡压力的减小, 支架材料的泡孔孔径增大, 材料的柔韧性增强, 表观活化能降低, 降解时间缩短.

关键词: 聚乳酸支架材料, 固态发泡, 热重分析, 动态热机械分析, 热分解动力学

Abstract:

Solvent-free solid-state foaming technology was used to fabricate microcellular polylactic acid (PLA) scaffold materials with cell sizes from 350 to 20 μm at saturation pressures of 2.5, 3.5, 4.0, and 5.0 MPa in carbon dioxide. The corresponding thermodynamic parameters were measured, including the decomposition temperature and rate, storage/loss modulus, and loss factor, using thermogravimetric analysis, dynamic thermal mechanical analysis, and scanning electron microscopy. The Kissinger, Ozawa-Doyle, and Vyazovkin equations were used to calculate the thermal decomposition kinetics for PLA foams of different cell sizes; their lifetimes in nitrogen were also obtained. It was observed that PLA foams with larger cell sizes, lower average activation energies, and better flexibilities could be fabricated at lower saturation pressures, resulting in reduced decomposition times.

Key words: Polylactic acid scaffold, Solid state foaming, Thermogravimetric analysis, Dynamic thermal mechanical analysis, Thermal decomposition kinetics

MSC2000: 

  • O642