物理化学学报 >> 2014, Vol. 30 >> Issue (5): 873-880.doi: 10.3866/PKU.WHXB201403042

电化学和新能源 上一篇    下一篇

单晶二氧化钛纳米棒阵列的修饰及其在量子点敏化太阳电池中的应用

王时茂1, 董伟伟1,2, 方晓东1,2, 邓赞红1,2, 邵景珍1,2, 胡林华2, 朱俊2   

  1. 1 中国科学院安徽光学精密机械研究所, 安徽省光子器件与材料重点实验室, 合肥230031;
    2 中国科学院新型薄膜太阳电池重点实验室, 合肥230031
  • 收稿日期:2014-01-13 修回日期:2014-03-04 发布日期:2014-04-25
  • 通讯作者: 董伟伟,方晓东 E-mail:wwdong@aiofm.ac.cn;xdfang@aiofm.ac.cn
  • 基金资助:

    国家重点基础研究发展计划(973)(2011CBA00700),国家高技术研究发展计划(863)(2011AA050527)及国家自然科学基金(51172237,61306082,61306083)资助项目

Modification of Single-Crystal TiO2 Nanorod Arrays and Its Application in Quantum Dot-Sensitized Solar Cells

WANG Shi-Mao1, DONG Wei-Wei1,2, FANG Xiao-Dong1,2, DENG Zan-Hong1,2, SHAO Jing-Zhen1,2, HU Lin-Hua2, ZHU Jun2   

  1. 1 Anhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, P. R. China;
    2 Key Laboratory of Novel Thin Film Solar Cells, Chinese Academy of Sciences, Hefei 230031, P. R. China
  • Received:2014-01-13 Revised:2014-03-04 Published:2014-04-25
  • Contact: DONG Wei-Wei, FANG Xiao-Dong E-mail:wwdong@aiofm.ac.cn;xdfang@aiofm.ac.cn
  • Supported by:

    The project was supported by the National Key Basic Research Program of China (973) (2011CBA00700), National High Technology Research and Development Program of China (863) (2011AA050527), and National Natural Science Foundation of China (51172237, 61306082, 61306083).

摘要:

使用TiCl4溶液对单晶TiO2纳米棒阵列(TNRs)进行修饰,通过在TiO2纳米棒表面合成TiO2纳米颗粒来提高TNRs的表面积,提高TNRs对量子点的吸附能力,并在此基础上研究了TiCl4修饰时间对基于单晶TNRs的CdS/CdSe量子点敏化太阳电池光伏性能的影响,同时结合强度调制光电流谱(IMPS)研究了TiO2纳米棒阵列的电子传输性能. 结果表明:TiCl4修饰可以大幅提高基于单晶TNRs的CdS/CdSe量子点敏化太阳电池的光伏性能,在TiCl4修饰时间为60 h时,其短路电流密度和光电转换效率分别由修饰前的(2.93±0.07) mA·cm-2和0.36%±0.02%提高至(8.19±0.12) mA·cm-2和1.17%±0.07%. 同时,IMPS测试表明电子在单晶TiO2纳米棒阵列中的传输速率高于在TiO2纳米颗粒薄膜中的传输速率,证明了单晶TiO2纳米棒阵列在电子传输方面的优越性.

关键词: 量子点敏化太阳电池, 光阳极, 二氧化钛, 纳米棒阵列, 修饰, 电子传输

Abstract:

Single-crystal TiO2 nanorod arrays (TNRs) are proposed to increase the electron transport rate and improve the cell performance of quantum dot- sensitized solar cells (QDSCs). However, the specific surface area of TNRs is much lower than that of TiO2 nanoparticle films, which leads to lower quantum dot adsorption and lower power conversion efficiency (η). In our investigation, TiCl4 solution was used to modify single-crystal rutile TNRs. The modification resulted in the synthesis of a large number of TiO2 nanoparticles on the surfaces of nanorods, which significantly increased the surface area and quantum dot adsorption of TNRs. When the TiCl4 modification time was 60 h, the short-circuit photocurrent density (Jsc) and η of TNRs based CdS/CdSe co-sensitized QDSCs increased from (2.93±0.07) mA·cm-2 and 0.36%±0.02% to (8.19±0.12) mA·cm-2 and 1.17%±0.07%, respectively. In addition, intensity modulated photocurrent spectroscopy measurements indicated that the electron transport rate in modified single-crystal rutile TNRs is faster than that in anatase TiO2 nanoparticle films, which is a desirable result.

Key words: Quantum dot-sensitized solar cell, Photoanode, Titanium dioxide, Nanorod array, Modification, Electron transport

MSC2000: 

  • O646