物理化学学报 >> 2014, Vol. 30 >> Issue (5): 881-890.doi: 10.3866/PKU.WHXB201403061

电化学和新能源 上一篇    下一篇

互通多孔碳/二氧化锰纳米复合材料的原位水热合成及电化学性能

张宣宣1, 冉奋1,2, 范会利1, 孔令斌1,2, 康龙1,2   

  1. 1 兰州理工大学材料科学与工程学院, 兰州730050;
    2 兰州理工大学甘肃省部共建有色金属先进加工与再利用国家重点实验室, 兰州730050
  • 收稿日期:2013-11-08 修回日期:2014-03-04 发布日期:2014-04-25
  • 通讯作者: 冉奋,康龙 E-mail:ranfen@163.com;kangl@lut.cn
  • 基金资助:

    国家自然科学基金(51203071,51363014,51362018),教育部重点项目(212183)和甘肃省自然科学杰出青年基金(1111RJDA012)资助

Hydrothermal Synthesis and Electrochemical Measurements of Interconnected Porous Carbon/MnO2 Composites

ZHANG Xuan-Xuan1, RAN Fen1,2, FAN Hui-Li1, KONG Ling-Bin1,2, KANG Long1,2   

  1. 1 School of Material Science and Engineerings, Lanzhou University of Technology, Lanzhou 730050, P. R. China;
    2 State Key Laboratory of Advanced Processing and Recycling of Non-Ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, P. R. China
  • Received:2013-11-08 Revised:2014-03-04 Published:2014-04-25
  • Contact: RAN Fen, KANG Long E-mail:ranfen@163.com;kangl@lut.cn
  • Supported by:

    The project was supported by the National Natural Science Foundation of China (51203071, 51363014, 51362018), Key Project of the Ministry of Education of China (212183), and Natural Science Funds for Distinguished Young Scholars of Gansu Province, China (1111RJDA012).

摘要:

以互通多孔碳(IPC)为载体,水热条件下在碳表面原位反应生成纳米结构的二氧化锰(MnO2),制备互通多孔碳/二氧化锰纳米(IPC/MnO2)复合电极材料. 采用扫描电镜(SEM),透射电镜(TEM),X射线衍射(XRD),热重分析(TGA)对其结构进行表征;采用循环伏安法、恒流充放电和交流阻抗对其电化学性能进行研究. 结果表明:生成的MnO2均匀地负载在碳的表面,形成多层次结构,并且随着温度的升高IPC表面负载的MnO2由纳米颗粒变为纳米片状结构;MnO2纳米片具有典型的K-Birnessite 型晶体结构;复合物中MnO2的含量约为34%(w). 在100 ℃制备的IPC/MnO2复合材料在三电极系统中最高比电容达到了411 F·g-1;随着反应温度的升高,比容量先增长后基本保持不变. 以IPC/MnO2为正极,活性炭(AC)为负极,1 mol·L-1 Na2SO4溶液为电解液组装成IPC/MnO2//AC 混合超级电容器,发现IPC/MnO2电极的电容器其电位窗口从1 V扩展到1.8 V,容量可达86F·g-1,且表现出良好的电容特性和大电流放电性能.

关键词: 二氧化锰, 互通多孔碳, 超级电容器, 复合电极材料

Abstract:

This article describes the electrochemical performance of a novel interconnected porous carbon/ MnO2 (IPC/MnO2) composite prepared by in situ self-limiting deposition under hydrothermal condition. The morphology and structure were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and thermogravimetric analysis (TGA), and the electrochemical behavior was investigated using cyclic voltammetry (CV), charge-discharge tests, electrochemical impedance spectroscopy (EIS), and cycle life tests. The results showed that MnO2 grew homogeneously on the IPC surface, forming a hierarchical microstructure. The MnO2 had a typical K-Birnessite-type crystal structure and the MnO2 content was about 34%(w). At high synthetic temperatures, the MnO2 particles on the IPC surface were smaller. The prepared electrode material exhibited a good electrochemical capacitance performance. As the reaction temperature increased, the specific capacitance of the IPC/MnO2 composite first increased and then remained constant. The IPC/MnO2 composite synthesized at 100 ℃ had the maximum specific capacitance, 411 F·g-1, in a three-electrode system. An asymmetric supercapacitor was constructed with the IPC/MnO2 composite as the positive electrode and activated carbon (AC) as the negative electrode, in a 1 mol·L-1 Na2SO4 electrolyte. The results showed that the corresponding potential window increased from 1 to 1.8 V. The maximum specific capacitance of the asymmetric supercapacitor was 86 F·g-1 and a good rate capability was achieved.

Key words: Manganese oxide, Interconnected porous carbon, Supercapacitor, Composite electrode material

MSC2000: 

  • O646