物理化学学报 >> 2014, Vol. 30 >> Issue (7): 1332-1340.doi: 10.3866/PKU.WHXB201405072

催化和表面科学 上一篇    下一篇

ZnSO4和La2O3作共修饰剂单金属Ru催化剂上苯选择加氢制环己烯

孙海杰1,2, 李永宇2, 李帅辉1, 张元馨1, 刘寿长1, 刘仲毅1, 任保增3   

  1. 1. 郑州大学化学与分子工程学院, 郑州 450001;
    2. 郑州师范学院化学系环境与催化工程研究所, 郑州 450044;
    3. 郑州大学化工与能源学院, 郑州 450001
  • 收稿日期:2014-02-28 修回日期:2014-05-04 发布日期:2014-06-30
  • 通讯作者: 刘仲毅 E-mail:liuzhongyi@zzu.edu.cn
  • 基金资助:

    国家自然科学基金(21273205,U1304204),国家科技型中小企业创新基金(10C26214104505)及河南省博士后科研项目(2013006)资助

ZnSO4 and La2O3 as Co-Modifier of the Monoclinic Ru Catalyst for Selective Hydrogenation of Benzene to Cyclohexene

SUN Hai-Jie1,2, LI Yong-Yu2, LI Shuai-Hui1, ZHANG Yuan-Xin1, LIU Shou-Chang1, LIU Zhong-Yi1, REN Bao-Zeng3   

  1. 1. College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China;
    2. Institute of Environmental and Catalytic Engineering, Department of Chemistry, Zhengzhou Normal University, Zhengzhou 450044, P. R. China;
    3. School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, P. R. China
  • Received:2014-02-28 Revised:2014-05-04 Published:2014-06-30
  • Contact: LIU Zhong-Yi E-mail:liuzhongyi@zzu.edu.cn
  • Supported by:

    The project was supported by the National Natural Science Foundation of China (21273205, U1304204), Innovation Found for Technology Based Firms of China (10C26214104505), and Postdoctoral Science Foundation of Henan Province, China (2013006).

摘要:

用沉淀法制备了单金属纳米Ru(0)催化剂,考察了ZnSO4和La2O3作共修饰剂对该催化剂催化苯选择加氢制环己烯性能的影响,并用X射线衍射(XRD)、X射线荧光(XRF)光谱、X射线光电子能谱(XPS)、俄歇电子能谱(AES)、透射电镜(TEM)和N2物理吸附等手段对加氢前后催化剂进行了表征. 结果表明,在ZnSO4存在下,随着添加碱性La2O3量的增加,ZnSO4水解生成的(Zn(OH)23(ZnSO4)(H2O)xx=1,3)盐量增加,催化剂活性单调降低,环己烯选择性单调升高. 当La2O3/Ru 物质的量比为0.075 时,Ru催化剂上苯转化率为77.6%,环己烯选择性和收率分别为75.2%和58.4%. 且该催化体系具有良好的重复使用性能. 传质计算结果表明,苯、环己烯和氢气的液-固扩散限制和孔内扩散限制都可忽略. 因此,高环己烯选择性和收率的获得不能简单归结为物理效应,而与催化剂的结构和催化体系密切相关. 根据实验结果,我们推测在化学吸附有(Zn(OH)23(ZnSO4)(H2O)xx=1,3)盐的Ru(0)催化剂有两种活化苯的活性位:Ru0和Zn2+. 因为Zn2+将部分电子转移给了Ru,Zn2+活化苯的能力比Ru0弱. 同时由于Ru和Zn2+的原子半径接近,Zn2+可以覆盖一部分Ru0活性位,导致解离H2的Ru0活性位减少. 这导致了Zn2+上活化的苯只能加氢生成环己烯和Ru(0)催化剂活性的降低. 本文利用双活性位模型来解释Ru基催化剂上的苯加氢反应,并用Hückel分子轨道理论说明了该模型的合理性.

关键词: 苯, 选择加氢, 环己烯, 钌, 锌,

Abstract:

A nano-scale monometallic Ru(0) catalyst was prepared by the precipitation method, and the effect of using ZnSO4 and La2O3 as co-modifiers on the performance of the catalyst for selective hydrogenation of benzene to cyclohexene was investigated. The catalysts before and after hydrogenation were characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF), X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), transmission electron microscopy (TEM), and N2-physisorption. It was found that increasing the amount of alkaline La2O3 increased the amount of the ((Zn(OH)2)3(ZnSO4)(H2O)x (x=1, 3) salt formed by the hydrolysis of ZnSO4, which resulted in a gradual decrease of the activity of the Ru(0) catalyst and a gradual increase of the selectivity for cyclohexene. When the molar ratio of La2O3/Ru was 0.075, cyclohexene selectivity of 75.2% and cyclohexene yield of 58.4% at a benzene conversion of 77.6% were achieved in 25 min over the Ru(0) catalyst in the presence of ZnSO4. Moreover, this catalytic system had good reusability. The mass transfer calculation results indicated that the liquid-solid diffusion constraints and pore diffusion limitations could all be ignored. This suggested that the high cyclohexene selectivity and cyclohexene yield could not be simply ascribed to physical effects, and were closely related to the catalyst structure and the catalytic system. Based on the experimental results, we suggest that the surface of the Ru(0) catalyst on which the (Zn(OH)2)3(ZnSO4)(H2O)x (x= 1, 3) salt chemisorbed had two types of active sites for activating the benzene molecules: Ru0 and Zn2+. The ability of Zn2+ to activate benzene was much weaker than that of Ru0 owing to some electron transfer from Zn2+ to Ru0, which was confirmed by the XPS and AES results. Furthermore, Zn2+ could cover some of the Ru active sites because Ru and Zn2+ have similar atomic radii, which decreased the number of Ru0 active sites for activating H2 molecules. As a result, the benzene activated on Zn2+ could only be hydrogenated to cyclohexene, and the activity of the Ru(0) catalyst decreased. A dual active site model is proposed, for the first time, to explain the reaction of benzene hydrogenation over the Ru-based catalyst, and Hückel molecular orbital theory was used to show the reasonableness of the model.

Key words: Benzene, Selective hydrogenation, Cyclohexene, Ruthenium, Znic, Lanthanum

MSC2000: 

  • O643