物理化学学报 >> 2015, Vol. 31 >> Issue (3): 457-466.doi: 10.3866/PKU.WHXB201501093

电化学和新能源 上一篇    下一篇

电化学法制备部分还原氧化石墨烯薄膜及其光电性能

李文有1, 贺蕴秋1,2, 李一鸣1   

  1. 1. 同济大学材料科学与工程学院, 上海 200092;
    2. 同济大学, 先进土木工程材料教育部重点实验室, 上海 200092
  • 收稿日期:2014-10-30 修回日期:2015-01-08 发布日期:2015-03-06
  • 通讯作者: 贺蕴秋 E-mail:heyunqiu@tongji.edu.cn
  • 基金资助:

    国家自然科学基金(51172162)资助项目

Photoelectric Properties of Graphene Oxide Film Prepared with the Electrochemical Method Using Varying Levels of Reduction

LI Wen-You1, HE Yun-Qiu1,2, LI Yi-Ming1   

  1. 1. School of Material Science and Engineering, Tongji University, Shanghai 200092, P. R. China;
    2. Key Laboratry of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, Shanghai 200092, P. R. China
  • Received:2014-10-30 Revised:2015-01-08 Published:2015-03-06
  • Contact: HE Yun-Qiu E-mail:heyunqiu@tongji.edu.cn
  • Supported by:

    The project was supported by the National Natural Science Foundation of China (51172162).

摘要:

提供了一种快速制备氧化石墨烯(GO)薄膜的方法, 并通过调节GO薄膜的含氧量来调控其能级结构.采用阳极电泳及阴极电化学还原联用的方法在F掺杂SnO2(FTO)导电玻璃上制备出不同层数及含氧量的GO薄膜, 并通过扫描电镜(SEM)、X射线衍射(XRD)、紫外可见(UV-Vis)光谱、X射线光电子能谱(XPS)、拉曼光谱及电化学分析对样品进行表征. 用20-350 s 不同时间电泳沉积得到层数约为77-570层的GO薄膜. 经过不同时间阴极还原的GO薄膜的禁带宽度为1.0-2.7 eV, 其导带位置及费米能级也随之改变. GO作为p型半导体, 与FTO导电膜之间会形成p-n 结, 在光强为100 mW·cm-2的模拟太阳光照射下, 电泳300 s 且电化学还原120 s时GO薄膜阳极光电流密度达到5.25×10-8 A·cm-2.

关键词: 氧化石墨烯, 电化学, 薄膜, 能级, 光电流密度

Abstract:

This article details a quick and simple method to prepare graphene oxide (GO) film and tune its energy level by adjusting the oxygen content. GO films with different layers were fabricated on fluorine-doped SnO2 (FTO) conductive glass using the anodic electrophoretic deposition process. The degree of oxidation was regulated by cathodic electrochemical reduction. The as-prepared GO films were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), ultraviolet-visible absorption (UV-Vis) spectroscopy, X-ray photoelectron spectra (XPS), Raman spectroscopy and electrochemical analysis. The number of GO layers was varied between 77 and 570 by controlling the electrophoretic deposition time (from 20 to 350 s). Changing the degree of oxidation caused the optical gap of GO to vary between 1.0 and 2.7 eV, and also impacted the edge of the conduction band and the Fermi energy for the sample. As a p-type semiconductor, a p-n junction can be formed between reduced GO and FTO. Under simulated sunlight irradiance of 100 mW·cm-2, the GO film with a deposition time of 300 s and reduction time of 120 s produced the highest photocurrent density of 5.25×10-8 A·cm-2.

Key words: Graphene oxide, Electrochemistry, Film, Energy level, Photocurrent density

MSC2000: 

  • O646