物理化学学报 >> 2015, Vol. 31 >> Issue (3): 425-434.doi: 10.3866/PKU.WHXB201501191
俞炜铃1, 左会文1, 陆春海2, 李奕1, 章永凡1, 陈文凯1
收稿日期:
2014-11-13
修回日期:
2015-01-19
发布日期:
2015-03-06
通讯作者:
陆春海, 陈文凯
E-mail:luchhi@126.com;wkchen@fzu.edu.cn
基金资助:
国家自然科学基金(21203027)和福建省自然科学基金(2012J01041)资助项目
YU Wei-Ling1, ZUO Hui-Wen1, LU Chun-Hai2, LI Yi1, ZHANG Yong-Fan1, CHEN Wen-Kai1
Received:
2014-11-13
Revised:
2015-01-19
Published:
2015-03-06
Contact:
LU Chun-Hai, CHEN Wen-Kai
E-mail:luchhi@126.com;wkchen@fzu.edu.cn
Supported by:
The project was supported by the National Natural Science Foundation of China (21203027) and Fujian Provincial Natural Science Foundation, China (2012J01041).
摘要:
采用密度泛函理论研究Au-Pd和Au-Pt 纳米团簇催化解离N2O. 首先根据计算得到Au19Pd和Au19Pt 团簇的最优构型(杂原子均位于团簇的表面). 以Au19Pd催化解离N2O为例研究催化解离的反应机理. 对此主要考虑两个反应机理, 分别是Eley-Rideal (ER)和Langmuir-Hinshelwood (LH). 第一个机理中N2O解离的能垒是1.118 eV, 并且放热0.371 eV. N2分子脱附后, 表面剩余的氧原子沿着ER路径消除需要克服的能垒是1.920eV, 这比反应沿着LH路径的能垒高0.251 eV. 此外根据LH机理, 氧原子在表面的吸附能是-3.203 eV, 而氧原子在表面转移所需的能垒是0.113 eV, 这表明氧原子十分容易在团簇表面转移, 从而促进氧气分子的生成. 因此, LH为最优反应路径. 为了比较Au19Pd和Au19Pt 对N2O解离的活性, 根据最优的反应路径来研究Au19Pt 催化解离N2O, 得到作为铂族元素的铂和钯对N2O的解离有催化活性, 尤其是钯. 同时, 将团簇与文献中的Au-Pd合金相比较, 得到这两种团簇对N2O 解离有较高的活性, 尤其是Au19Pd团簇. 再者, O2的脱附不再是影响反应的主要原因, 这可以进一步提高团簇解离N2O的活性.
MSC2000:
俞炜铃, 左会文, 陆春海, 李奕, 章永凡, 陈文凯. 纳米团簇Au19Pd和Au19Pt催化解离N2O[J]. 物理化学学报, 2015, 31(3): 425-434.
YU Wei-Ling, ZUO Hui-Wen, LU Chun-Hai, LI Yi, ZHANG Yong-Fan, CHEN Wen-Kai. Nitrous Oxide Decomposition Catalyzed by Au19Pd and Au19Pt Clusters[J]. Acta Phys. -Chim. Sin., 2015, 31(3): 425-434.
(1) Burda, C.; Chen, X.; Narayanan, R.; El-Sayed, M. A. Chem. Rev. 2005, 105, 1025. doi: 10.1021/cr030063a (2) Ghosh, S. K.; Pal, T. Chem. Rev. 2007, 107, 4797. doi: 10.1021/cr0680282 (3) Jin, R.; Cao, Y.; Mirkin, C. A.; Kelly, K.; Schatz, G. C.; Zheng, J. Science 2001, 294, 1901. doi: 10.1126/science.1066541 (4) Sun, Y.; Xia, Y. Science 2002, 298, 2176. doi: 10.1126/science.1077229 (5) Narayanan, R.; El-Sayed, M. A. J. Am. Chem. Soc. 2004, 126, 7194. doi: 10.1021/ja0486061 (6) Tian, N.; Zhou, Z. Y.; Sun, S. G.; Ding, Y.;Wang, Z. L. Science 2007, 316, 732. doi: 10.1126/science.1140484 (7) Warren, S. C.; Messina, L. C.; Slaughter, L. S.; Kamperman, M.; Zhou, Q.; Gruner, S. M.; DiSalvo, F. J.;Wiesner, U. Science 2008, 320, 1748. doi: 10.1126/science.1159950 (8) Sulman, E.; Matveeva, V.; Doluda, V.; Nicoshvili, L.; Bronstein, L.; Valetsky, P.; Tsvetkova, I. Top Catal. 2006, 39, 187. doi: 10.1007/s11244-006-0056-z (9) Ozin, G. A. Adv. Mater. 1992, 4, 612. (10) Cahn, R.W. Nature 1992, 359, 591. doi: 10.1038/359591a0 (11) Hayashi, C. Phys. Today 1987, 12, 44. (12) Gleiter, H. Prog. Mater. Sci. 1989, 33, 223. doi: 10.1016/0079- 6425(89)90001-7 (13) Fendler, J. H. Chem. Rev. 1987, 87, 877. doi: 10.1021/cr00081a002 (14) Henglein, A. Chem. Rev. 1989, 89, 1861. (15) Schimid, G. Clusters and Colloids: from Theory to Application; Wiley-VCH: New York, 1994. (16) Toshima, N.; Yonezawa, T. New J. Chem. 1998, 22, 1179. doi: 10.1039/a805753b (17) Beecroft, L. L.; Ober, C. K. Chem. Mater. 1997, 9, 1302. doi: 10.1021/cm960441a (18) Siegel, R. MRS Bulletin 1989, 14, 66. (19) Schmid, G. Chem. Rev. 1992, 92, 1709. doi: 10.1021/cr00016a002 (20) Kamat, P. V. Chem. Rev. 1993, 93, 267. doi: 10.1021/cr00017a013 (21) Lewis, L. N. Chem. Rev. 1993, 93, 2693. doi: 10.1021/cr00024a006 (22) Gates, B. Chem. Rev. 1995, 95, 511. doi: 10.1021/cr00035a003 (23) Brus, L. J. Phys. Chem. 1986, 90, 2555. doi: 10.1021/j100403a003 (24) Lee, A. F.; Baddeley, C. J.; Hardacre, C.; Ormerod, R. M.; Lambert, R. M.; Schmid, G.;West, H. J. Phys. Chem. 1995, 99, 6096. doi: 10.1021/j100016a053 (25) Ponec, V.; Sachtler,W. J. Catal. 1972, 24, 250. doi: 10.1016/0021-9517(72)90069-3 (26) Sinfelt, J. H.; Carter, J.; Yates, D. J. Catal. 1972, 24, 283. doi: 10.1016/0021-9517(72)90072-3 (27) Toshima, N.; Yonezawa, T.; Kushihashi, K. J. Chem. Soc. 1993, 89, 2537. (28) Toshima, N.; Harada, M.; Yamazaki, Y.; Asakura, K. J. Phys. Chem. 1992, 96, 9927. doi: 10.1021/j100203a064 (29) Harada, M.; Asakura, K.; Toshima, N. J. Phys. Chem. 1993, 97, 5103. doi: 10.1021/j100121a042 (30) Wang, Y.; Toshima, N. J. Phys. Chem. B 1997, 101, 5301. doi: 10.1021/jp9704224 (31) Sinfelt, J. H. Accounts Chem. Res. 1987, 20, 134. doi: 10.1021/ar00136a002 (32) Li, J.; Li, X.; Zhai, H. J.;Wang, L. S. Science 2003, 299, 864. doi: 10.1126/science.1079879 (33) Gruene, P.; Rayner, D. M.; Redlich, B.; van der Meer, A. F.; Lyon, J. T.; Meijer, G.; Fielicke, A. Science 2008, 321, 674. doi: 10.1126/science.1161166 (34) Wang, J.;Wang, G.; Zhao, J. Chem. Phys. Lett. 2003, 380, 716. doi: 10.1016/j.cplett.2003.09.062 (35) Kryachko, E.; Remacle, F. Int. J. Quantum Chem. 2007, 107, 2922. (36) Aikens, C. M.; Schatz, G. C. J. Phys. Chem. A 2006, 110, 13317. doi: 10.1021/jp065206m (37) Molina, L.; Hammer, B. J. Catal. 2005, 233, 399. doi: 10.1016/j.jcat.2005.04.037 (38) Jonah, C. D.; Rao, B. M. Radiation Chemistry: Present Status and Future Trends; Elsevier: Amsterdam, 2001. (39) Sinfelt, J. H. Bimetallic Catalysts: Discoveries, Concepts, and Applications;Wiley: New York, 1983. (40) Belloni, J.; Mostafavi, M.; Remita, H.; Marignier, J. L.; Delcourt, M. O. New J. Chem. 1998, 22, 1239. doi: 10.1039/a801445k (41) Pyykkö, P.; Runeberg, N. Angew. Chem. 2002, 114, 2278. doi: 10.1002/1521-3757(20020617)114:12<2278::AID-ANGE2278>3.0.CO;2-F (42) Häkkinen, H.; Abbet, S.; Sanchez, A.; Heiz, U.; Landman, U. Angew. Chem. Int. Edit. 2003, 42, 1297. doi: 10.1002/anie.200390334 (43) Janssens, E.; Tanaka, H.; Neukermans, S.; Silverans, R. E.; Lievens, P. Phys. Rev. B 2004, 69, 085402. doi: 10.1103/PhysRevB.69.085402 (44) Torres, M.; Fernández, E.; Balbás, L. Phys. Rev. B 2005, 71, 155412. doi: 10.1103/PhysRevB.71.155412 (45) Yuan, D.;Wang, Y.; Zeng, Z. J. Chem. Phys. 2005, 122, 114310. doi: 10.1063/1.1862239 (46) Majumder, C.; Kandalam, A. K.; Jena, P. Phys. Rev. B 2006, 74, 205437. doi: 10.1103/PhysRevB.74.205437 (47) Walter, M.; Häkkinen, H. Phys. Chem. Chem. Phys. 2006, 8, 5407. doi: 10.1039/b612221c (48) Gao, Y.; Bulusu, S.; Zeng, X. C. ChemPhysChem 2006, 7, 2275. (49) Wang, L. M.; Bulusu, S.; Zhai, H. J.; Zeng, X. C.;Wang, L. S. Angew. Chem. Int. Edit. 2007, 46, 2915. (50) Wang, L. M.; Bulusu, S.; Huang,W.; Pal, R.;Wang, L. S.; Zeng, X. C. J. Am. Chem. Soc. 2007, 129, 15136. doi: 10.1021/ja077465a (51) Fa,W.; Dong, J. J. Chem. Phys. 2008, 128, 144307. doi: 10.1063/1.2897917 (52) Zorriasatein, S.; Joshi, K.; Kanhere, D. G. J. Chem. Phys. 2008, 128, 184314. doi: 10.1063/1.2913153 (53) Edwards, J. K.; Solsona, B.; Ntainjua, E.; Carley, A. F.; Herzing, A. A.; Kiely, C. J.; Hutchings, G. J. Science 2009, 323, 1037. doi: 10.1126/science.1168980 (54) Bernardotto, G.; Menegazzo, F.; Pinna, F.; Signoretto, M.; Cruciani, G.; Strukul, G. Appl. Catal. A 2009, 358, 129. doi: 10.1016/j.apcata.2009.02.010 (55) Menegazzo, F.; Burti, P.; Signoretto, M.; Manzoli, M.; Vankova, S.; Boccuzzi, F.; Pinna, F.; Strukul, G. J. Catal. 2008, 257, 369. doi: 10.1016/j.jcat.2008.05.019 (56) Ishihara, T.; Hata, Y.; Nomura, Y.; Kaneko, K.; Matsumoto, H. Chem. Lett. 2007, 36, 878. doi: 10.1246/cl.2007.878 (57) Solsona, B. E.; Edwards, J. K.; Landon, P.; Carley, A. F.; Herzing, A.; Kiely, C. J.; Hutchings, G. J. Chem. Mater. 2006, 18, 2689. doi: 10.1021/cm052633o (58) Edwards, J. K.; Solsona, B. E.; Landon, P.; Carley, A. F.; Herzing, A.; Kiely, C. J.; Hutchings, G. J. J. Catal. 2005, 236, 69. doi: 10.1016/j.jcat.2005.09.015 (59) Landon, P.; Collier, P. J.; Papworth, A. J.; Kiely, C. J.; Hutchings, G. J. Chem. Commun. 2002, 2058. (60) Pohl, M. M.; Radnik, J.; Schneider, M.; Bentrup, U.; Linke, D.; Brückner, A.; Ferguson, E. J. Catal. 2009, 262, 314. doi: 10.1016/j.jcat.2009.01.008 (61) Chen, M.; Kumar, D.; Yi, C.W.; Goodman, D.W. Science 2005, 310, 291. doi: 10.1126/science.1115800 (62) Marx, S.; Baiker, A. J. Phys. Chem. C 2009, 113, 6191. doi: 10.1021/jp808362m (63) Dimitratos, N.; Lopez-Sanchez, J. A.; Anthonykutty, J. M.; Brett, G.; Carley, A. F.; Tiruvalam, R. C.; Herzing, A. A.; Kiely, C. J.; Knight, D.W.; Hutchings, G. J. Phys. Chem. Chem. Phys. 2009, 11, 4952. doi: 10.1039/b904317a (64) Wang, D.; Villa, A.; Porta, F.; Prati, L.; Su, D. J. Phys. Chem. C 2008, 112, 8617. (65) Wang, D.; Villa, A.; Porta, F.; Su, D.; Prati, L. Chem. Commun. 2006, 1956. (66) Enache, D. I.; Edwards, J. K.; Landon, P.; Solsona-Espriu, B.; Carley, A. F.; Herzing, A. A.;Watanabe, M.; Kiely, C. J.; Knight, D.W.; Hutchings, G. J. Science 2006, 311, 362. doi: 10.1126/science.1120560 (67) Dimitratos, N.; Villa, A.;Wang, D.; Porta, F.; Su, D.; Prati, L. J. Catal. 2006, 244, 113. doi: 10.1016/j.jcat.2006.08.019 (68) Wang, X.; Venkataramanan, N. S.; Kawanami, H.; Ikushima, Y. Green Chem. 2007, 9, 1352. doi: 10.1039/b703458j (69) Kesavan, L.; Tiruvalam, R.; Ab Rahim, M. H.; Bin Saiman, M. I.; Enache, D. I.; Jenkins, R. L.; Dimitratos, N.; Lopez-Sanchez, J. A.; Taylor, S. H.; Knight, D.W. Science 2011, 331, 195. (70) Liu, P.; Nørskov, J. K. Phys. Chem. Chem. Phys. 2001, 3, 3814. doi: 10.1039/b103525h (71) Mueller, U.; Schubert, M.; Yaghi, O.; Ertl, G.; Knözinger, H.; Schüth, F.;Weitkamp, J. Wiley VCH 2008, 1, 247. (72) Kaya, S.; Üner, D. Turk J. Chem. 2008, 32, 645. (73) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457. doi: 10.1021/cr00039a007 (74) Bond, G. C. Platinum Metals Review 2007, 51, 63. doi: 10.1595/147106707X187353 (75) Bernhardt, T.; Heiz, U.; Landman, U. Chemical and Catalytic Properties of Size-Selected Free and Supported Clusters ; Springer: Berlin Heidelberg, 2007. (76) Zhu, S.;Wang, X.;Wang, A.; Cong, Y.; Zhang, T. Chem. Commun. 2007, 1695. (77) Ravishankara, A.; Daniel, J. S.; Portmann, R.W. Science 2009, 326, 123. doi: 10.1126/science.1176985 (78) Beyer, H.; Emmerich, J.; Chatziapostolou, K.; Köhler, K. Appl. Catal. A 2011, 391, 411. doi: 10.1016/j.apcata.2010.03.060 (79) Haber, J.; Nattich, M.; Machej, T. Appl. Catal. B 2008, 77, 278. doi: 10.1016/j.apcatb.2007.07.028 (80) Suárez, S.; Yates, M.; Petre, A.; Martín, J.; Avila, P.; Blanco, J. Appl. Catal. B 2006, 64, 302. doi: 10.1016/j.apcatb.2005.12.006 (81) Xu, X.; Xu, H.; Kapteijn, F.; Moulijn, J. Appl. Catal. B 2004, 53, 265. doi: 10.1016/j.apcatb.2004.04.023 (82) Li, Y.; Armor, J. N. Appl. Catal. B 1992, 1, L21. (83) Doi, K.;Wu, Y. Y.; Takeda, R.; Matsunami, A.; Arai, N.; Tagawa, T.; Goto, S. Appl. Catal. B 2001, 35, 43. doi: 10.1016/ S0926-3373(01)00231-4 (84) Centi, G.; Perathoner, S.; Vazzana, F.; Marella, M.; Tomaselli, M.; Mantegazza, M. Adv. Environ Res. 2000, 4, 325. doi: 10.1016/S1093-0191(00)00032-0 (85) Paul, D. K.; Marten, C. D.; Yates, J. T. Langmuir 1999, 15, 4508. doi: 10.1021/la980672r (86) Yuzaki, K.; Yarimizu, T.; Ito, S. I.; Kunimori, K. Catal. Lett. 1997, 47, 173. doi: 10.1023/A:1019017407609 (87) Oi, J.; Obuchi, A.; Bamwenda, G. R.; Ogata, A.; Yagita, H.; Kushiyama, S.; Mizuno, K. Appl. Catal. B 1997, 12, 277. doi: 10.1016/S0926-3373(96)00079-3 (88) Dann, T.W.; Schulz, K. H.; Mann, M.; Collings, M. Appl. Catal. B 1995, 6, 1. doi: 10.1016/0926-3373(95)00006-2 (89) Zhu, S.;Wang, X.;Wang, A.; Zhang, T. Catal. Today 2008, 131, 339. doi: 10.1016/j.cattod.2007.10.093 (90) Ohnishi, C.; Iwamoto, S.; Inoue, M. Chem. Eng. Sci. 2008, 63, 5076. doi: 10.1016/j.ces.2007.08.011 (91) Boissel, V.; Tahir, S.; Koh, C. A. Appl. Catal. B 2006, 64, 234. doi: 10.1016/j.apcatb.2005.12.001 (92) Nobukawa, T.; Yoshida, M.; Kameoka, S.; Ito, S. I.; Tomishige, K.; Kunimori, K. Catal. Today 2004, 93, 791. (93) Tanaka, S. I.; Yuzaki, K.; Ito, S. I.; Kameoka, S.; Kunimori, K. J. Catal. 2001, 200, 203. doi: 10.1006/jcat.2001.3197 (94) Uetsuka, H.; Aoyagi, K.; Tanaka, S.; Yuzaki, K.; Ito, S.; Kameoka, S.; Kunimori, K. Catal. Lett. 2000, 66, 87. doi: 10.1023/A:1019066732528 (95) Tanaka, S. I.; Yuzaki, K.; Ito, S. I.; Uetsuka, H.; Kameoka, S.; Kunimori, K. Catal. Today 2000, 63, 413. doi: 10.1016/S0920-5861(00)00486-7 (96) German, E.; Efremenko, I. J. Mol. Struct. -Theochem 2004, 711, 159. doi: 10.1016/j.theochem.2004.10.001 (97) Mihut, C.; Descorme, C.; Duprez, D.; Amiridis, M. D. J. Catal. 2002, 212, 125. doi: 10.1006/jcat.2002.3770 (98) Kapteijn, F.; Rodriguez-Mirasol, J.; Moulijn, J. A. Appl. Catal. B 1996, 9, 25. doi: 10.1016/0926-3373(96)90072-7 (99) Yamashita, T.; Vannice, A. J. Catal. 1996, 161, 254. doi: 10.1006/jcat.1996.0183 (100) Leglise, J.; Petunchi, J. O.; Hall,W. K. J. Catal. 1984, 86, 392. doi: 10.1016/0021-9517(84)90384-1 (101) Dandl, H.; Emig, G. Appl. Catal. A 1998, 168, 261. doi: 10.1016/S0926-860X(97)00357-8 (102) Mondal, K.; Banerjee, A.; Ghanty, T. K. J. Phys. Chem. C 2014, 118, 11935. (103) Wei, X.; Yang, X. F.;Wang, A. Q.; Li, L.; Liu, X. Y.; Zhang, T.; Mou, C. Y.; Li, J. J. Phys. Chem. C 2012, 116, 6222. doi: 10.1021/jp210555s (104) Tateishi, Y.; Tsuneyuki, T.; Furukawa, H.; Kagawa, S.; Moriguchi, I.; Kanmura, Y.; Teraoka, Y. Catal. Today 2008, 139, 59. doi: 10.1016/j.cattod.2008.08.008 (105) Dacquin, J. P.; Dujardin, C.; Granger, P. Catal. Today 2008, 137, 390. doi: 10.1016/j.cattod.2008.01.016 (106) Yoshida, H.; Tsuruta, T.; Yazawa, Y.; Hattori, T. Appl. Catal. A 2007, 325, 50. doi: 10.1016/j.apcata.2007.03.001 (107) Christoforou, S.; Efthimiadis, E.; Vasalos, I. Catal. Lett. 2002, 79, 137. doi: 10.1023/A:1015360425678 (108) Gunasekaran, N.; Rajadurai, S.; Carberry, J. Catal. Lett. 1995, 35, 373. doi: 10.1007/BF00807194 (109) Burch, R.; Daniells, S.; Breen, J.; Hu, P. J. Catal. 2004, 224, 252. doi: 10.1016/j.jcat.2004.03.027 |
[1] | 胡媛媛,王从洋. 双金属促进的均相碳氢键活化反应[J]. 物理化学学报, 2019, 35(9): 913 -922 . |
[2] | 单春晖,白若鹏,蓝宇. 过渡金属参与C―H键切断模式的理论研究进展[J]. 物理化学学报, 2019, 35(9): 940 -953 . |
[3] | 赵越,崔佳桐,胡继闯,马嘉璧. VO1-4+阳离子与n-CmH2m+2 (m = 3, 5, 7)烷烃的反应性研究:氧含量和碳链长度的影响[J]. 物理化学学报, 2019, 35(5): 531 -538 . |
[4] | 郑东,熊鹏飞,钟北京. NOFBX新型绿色推进剂燃烧化学反应动力学模型[J]. 物理化学学报, 2019, 35(11): 1241 -1247 . |
[5] | 陈必华,ELAGEED Elnazeer H. M.,张永亚,高国华. 离子液体BmmimOAc催化2-芳氨基乙醇与二硫化碳一步缩合合成3-芳基-2-噻唑硫酮[J]. 物理化学学报, 2018, 34(8): 952 -958 . |
[6] | 孙国栋,康熙,金山,李小武,胡大乔,汪恕欣,朱满洲. 银镍合金团簇Ag4Ni2(SPhMe2)8 (SPhMe2 = 2, 4-二甲基苯硫酚)的合成及其结构表征[J]. 物理化学学报, 2018, 34(7): 799 -804 . |
[7] | NARAYANAM Nagaraju,CHINTAKRINDA Kalpana,方伟慧,张磊,张健. 具有精准结构Zr-O及Zr/Ti-O纳米团簇的深共熔溶剂热合成[J]. 物理化学学报, 2018, 34(7): 781 -785 . |
[8] | 郭肖红,周影,石利红,张彦,张彩红,董川,张国梅,双少敏. 基于乙醇和铝离子聚集诱导的铜纳米团簇[J]. 物理化学学报, 2018, 34(7): 818 -824 . |
[9] | 郑有坤,姜晖,王雪梅. 多策略可控合成原子精度合金纳米团簇[J]. 物理化学学报, 2018, 34(7): 740 -754 . |
[10] | 杨丽娜,黄莉,宋雪洋,贺文雪,姜泳,孙治湖,韦世强. 金纳米团簇在盐酸和十二硫醇刻蚀作用下的原位生长动力学研究[J]. 物理化学学报, 2018, 34(7): 762 -769 . |
[11] | 任春醒,李晓霞,郭力. CL-20热分解反应机理的ReaxFF分子动力学模拟[J]. 物理化学学报, 2018, 34(10): 1151 -1162 . |
[12] | 王子民,郑默,谢勇冰,李晓霞,曾鸣,曹宏斌,郭力. 基于ReaxFF力场的对硝基苯酚臭氧氧化分子动力学模拟[J]. 物理化学学报, 2017, 33(7): 1399 -1410 . |
[13] | 张英杰,朱子翼,董鹏,邱振平,梁慧新,李雪. LiFePO4电化学反应机理、制备及改性研究新进展[J]. 物理化学学报, 2017, 33(6): 1085 -1107 . |
[14] | 李申慧,李静,郑安民,邓风. 固体酸催化剂结构与催化反应机理的核磁共振研究[J]. 物理化学学报, 2017, 33(2): 270 -282 . |
[15] | 郑东,钟北京,姚通. 航空煤油替代燃料模型构建方法及HEF航空煤油替代燃料模型[J]. 物理化学学报, 2017, 33(12): 2438 -2445 . |
|