物理化学学报 >> 2015, Vol. 31 >> Issue (5): 807-816.doi: 10.3866/PKU.WHXB201503242
寇艳蕾, 曲胜春, 刘孔, 池丹, 卢树弟, 李彦沛, 岳世忠
收稿日期:
2015-01-05
修回日期:
2015-03-23
发布日期:
2015-05-08
通讯作者:
曲胜春
E-mail:qsc@semi.ac.cn
基金资助:
国家自然科学基金重大项目(61204002)和国家重点基础研究发展规划项目(973) (2014CB643503)资助
KOU Yan-Lei, QU Sheng-Chun, LIU Kong, CHI Dan, LU Shu-Di, LI Yan-Pei, YUE Shi-Zhong
Received:
2015-01-05
Revised:
2015-03-23
Published:
2015-05-08
Contact:
QU Sheng-Chun
E-mail:qsc@semi.ac.cn
Supported by:
The project was supported by the National Natural Science Foundation of China (61204002) and National Key Basic Research Program of China (973)(2014CB643503).
摘要:
有机-无机杂化太阳能电池因其结合了有机材料和无机材料各自的优势而引起了人们的广泛关注和研究. Cd基化合物纳米晶因其具有制备方法简单、尺寸及形貌可控、载流子迁移率高和稳定性好等优点而成为最早被研究的一类无机受体. 本文介绍了有机-无机杂化太阳能电池的结构及原理, 分析了影响有机-无机杂化太阳能电池效率的三个主要因素, 分别是开路电压(Voc)、短路电流(Jsc)和填充因子(FF). 从改善Cd基化合物纳米晶的合成方法, 增加Cd基化合物纳米晶和有机聚合物间的界面接触, 以及优化Cd基化合物纳米晶和有机聚合物所用溶剂和所占比例等方面阐述了近年来Cd基化合物纳米晶-有机聚合物杂化太阳能电池的研究进展. 并展望了Cd基化合物纳米晶-有机聚合物杂化太阳能电池的发展方向.
MSC2000:
寇艳蕾, 曲胜春, 刘孔, 池丹, 卢树弟, 李彦沛, 岳世忠. Cd基化合物纳米晶-有机聚合物杂化太阳能电池研究进展[J]. 物理化学学报, 2015, 31(5): 807-816.
KOU Yan-Lei, QU Sheng-Chun, LIU Kong, CHI Dan, LU Shu-Di, LI Yan-Pei, YUE Shi-Zhong. Development of Cd-Based Compound Nanocrystal-Organic Polymer Hybrid Solar Cells[J]. Acta Phys. -Chim. Sin., 2015, 31(5): 807-816.
(1) Gevorgyan, A. S.; Medford, A. J.; Bundgaard, E.; et al. Sol. Energy Mater. Sol. Cells 2011, 95 (5), 1398. doi: 10.1016/j.solmat.2011.01.010 (2) Krebs, F. C.; Nielsen, T. D.; Fyenbo, J.; Wadstrøm, M.; Pedersen, M. S. Energy Environ. Sci. 2010, 3 (5), 512. doi: 10.1039/b918441d (3) Tong, F.; Kim, K.; Martinez, D.; Thapa, R.; Ahyi, A.; Williams, J.; Kim, D. J.; Lee, S.; Lim, E.; Lee, K. K.; Park, M. Semicond. Sci. Technol. 2012, 27 (10), 105005. (4) Liu, R. C. Materials 2014, 7 (4), 2747. doi: 10.3390/ma7042747 (5) Nguyen, B. P.; Kim, T.; Park, C. R. J. Nanomater. 2014, 2014, 243041. (6) Zhang, H. J.; Hou, X. Process. Chem. 2012, 24 (11), 2106. [张会京, 侯信. 化学进展, 2012, 24 (11), 2106.] (7) Saunders, B. R. J. Colloid Interface Sci. 2012, 369 (1), 1. doi: 10.1016/j.jcis.2011.12.016 (8) Xu, T. T.; Qiao, Q. Q. Energy Environ. Sci. 2011, 4 (8), 2700. doi: 10.1039/c0ee00632g (9) Leng, M. Z.; Song, J. Y.; Liu, J. Q. Mater. Rev. 2013, 4 (27), 16. [冷明哲, 宋箭叶, 刘建强. 材料导报, 2013, 4 (27), 16.] (10) Ishwara, T.; Bradley, D. D. C.; Nelson, J.; Ravirajan, P.; Vanseveren, I.; Cleij, T.; Vanderzande, D.; Lutsen, L.; Tierney, S.; Heeney, M.; McCulloch, I. Appl. Phys. Lett. 2008, 92 (5), 053308-1. doi: 10.1063/1.2840608 (11) Rand, B. P.; Genoe, J.; Heremans, P.; Poortmans, J. Prog. Photovolt: Res. Appl. 2007, 15 (8), 659. (12) Greenham, N. C.; Peng, X. G.; Alivisatos, A. P. Phys. Rev. B 1996, 54 (24), 17628. doi: 10.1103/PhysRevB.54.17628 (13) Huynh, W. U.; Dittmer, J. J.; Alivisatos, A. P. Science 2002, 295 (5564), 2425. doi: 10.1126/science.1069156 (14) Chang, J.; Waclawik, E. R. RSC Adv. 2014, 4 (45), 23505. doi: 10.1039/c4ra02684e (15) Murray, C. B.; Norris, D. J.; Bawendi, M. G. J. Am. Chem. Soc. 1993, 115 (19), 8706. doi: 10.1021/ja00072a025 (16) Peng, Z. A.; Peng, X. G. J. Am. Chem. Soc. 2001, 123 (1), 183. doi: 10.1021/ja003633m (17) Manna, L.; Scher, E. C.; Alivisatos, A. P. J. Am. Chem. Soc. 2000, 122 (51), 12700. doi: 10.1021/ja003055+ (18) Manna, L.; Wang, L.W.; Cingolani, R.; Alivisatos, A. P. J. Phys. Chem. B 2005, 109 (13), 6183. doi: 10.1021/jp0445573 (19) Yin, Y. D.; Alivisatos, A. P. Nature 2005, 437 (29), 664. (20) Deng, Z. T.; Cao, L.; Tang, F. Q.; Zou, B. S. J. Phys. Chem. B 2005, 109 (35), 16671. doi: 10.1021/jp052484x (21) Pang, Q.; Zhao, L. J.; Cai, Y.; Nguyen, D. P.; Regnault, N.; Wang, N.; Yang, S. H.; Ge, W. K.; Ferreira, R.; Bastard, G.; Wang, J. N. Chem. Mater. 2005, 17 (21), 5263. doi: 10.1021/cm050774k (22) Zhao, H. L.; Shen, H. B.; Wang, H. Z.; Li, L. S. Acta Phys. -Chim. Sin. 2010, 26 (3), 691. [赵慧玲, 申怀彬, 王洪哲, 李林松. 物理化学学报, 2010, 26 (3), 691.] doi: 10.3866/PKU.WHXB20100315 (23) Zhang, W. J.; Jin, C.; Yang, Y. J.; Zhong, X. H. Inorg. Chem. 2012, 51 (1), 531. doi: 10.1021/ic201989w (24) Zhang, W. J.; Zhang, H.; Feng, Y. Y.; Zhong, X. H. ACS Nano 2012, 6 (12), 11066. (25) Gaponik, N.; Talapin, D. V.; Rogach, A. L.; Eychmu, A.; Weller, H. Nano Lett. 2002, 2 (8), 803. doi: 10.1021/nl025662w (26) Dorokhin, D.; Tomczak, N.; Han, M.; Reinhoudt, D. N.; Velders, A. H.; Vancso, G. J. ACS Nano 2009, 3 (3), 661. doi: 10.1021/nn8006515 (27) Navarro, D. A. G.; Watson, D. F.; Aga, D. S.; Banerjee, S. Environ. Sci. Technol. 2009, 43 (3), 677. doi: 10.1021/es8017623 (28) Qin, B.; Zhao, Z. Z.; Song, R.; Shanbhag, S.; Tang, Z. Y. Angew. Chem. Int. Edit. 2008, 47 (51), 9875. doi: 10.1002/anie.v47:51 (29) Ananthakumar, S.; Ramkumar, J.; Babu, S. M. Mat. Sci. Semicon. Proc. 2014, 22, 44. doi: 10.1016/j.mssp.2014.02.008 (30) Surana, K.; Singh, P. K.; Rhee, H.W.; Bhattacharya, B. J. Ind. Eng. Chem. 2014, 20 (6), 4188. doi: 10.1016/j.jiec.2014.01.019 (31) Hoppe, H.; Sariciftci, N. S. J. Mater. Chem. 2006, 16 (1), 45. doi: 10.1039/B510618B (32) Pei, J.; Hao, Y. Z.; Sun, B.; Li, Y. P.; Fan, L. X.; Sun, S.; Wang, S. X. Acta Phys. -Chim. Sin. 2013, 30 (3), 397. [裴娟, 郝彦忠, 孙宝, 李英品, 范龙雪, 孙硕, 王尚鑫. 物理化学学报, 2013, 30 (3), 397.] doi: 10.3866/PKU.WHXB201211161 (33) Noone, K. M.; Subramaniyan, S.; Zhang, Q. F.; Cao, G. Z.; Jenekhe, S. A.; Ginger, D. S. J. Phys. Chem. C 2011, 115 (49), 24403. doi: 10.1021/jp207514v (34) Martnez, F. E.; Albero, J.; Palomares, E. J. Phys. Chem. Lett. 2010, 1 (20), 3039. doi: 10.1021/jz101228z (35) Talapin, D. V.; Lee, J. S.; Kovalenko, M. V.; Shevchenko, E. V. Chem. Rev. 2010, 110 (1), 389. doi: 10.1021/cr900137k (36) Mehta, A.; Sharma, S. N.; Chawla, P.; Chand, S. Colloid Polym. Sci. 2013, 292 (2), 301. (37) Olson, J. D.; Gray, G. P.; Carter, S. A. Sol. Energy Mater Sol. Cells 2009, 93 (4), 519. doi: 10.1016/j.solmat.2008.11.022 (38) Zhou, R. J.; Stalder, R.; Xie, D. P.; Cao, W. R.; Zheng, Y.; Yang, Y. X.; Plaisant, M.; Holloway, P. H.; Schanze, K. S.; Reynolds, J. R.; Xue, J. G. ACS Nano 2013, 7 (6), 4846. doi: 10.1021/nn305823w (39) Moreels, I.; Justo, Y.; Geyter, B. D.; Haustraete, K.; Martins, J. C.; Hens, Z. ACS Nano 2011, 5 (3), 2004. doi: 10.1021/nn103050w (40) Owen, J. S.; Park, J.; Trudeau, P. E.; Alivisatos, A. P. J. Am. Chem. Soc. 2008, 130 (37), 12279. doi: 10.1021/ja804414f (41) Puzder, A.; Williamson, J. A.; Zaitseva, N.; Galli, G.; Manna, L.; Alivisatos, A. P. Nano Lett. 2004, 4 (12), 2361. doi: 10.1021/nl0485861 (42) Tang, J.; Kemp, K.W.; Hoogland, S.; Jeong, K. S.; Liu, H.; Levina, L.; Furukawa, M.; Wang, X. H.; Debnath, R.; Cha, D.; Chou, K.W.; Fischer, A.; Amassian, F.; Asbury, J. B.; Sargent, E. H. Nat. Mater. 2011, 10 (10), 765. doi: 10.1038/nmat3118 (43) Zhou, R. J.; Xue, J. G. ChemPhysChem 2012, 13 (10), 2471. doi: 10.1002/cphc.201101016 (44) Yang, J. H.; Tang, A.W.; Zhou, R. J.; Xue, J. G. Sol. Energy Mater. Sol. Cells 2011, 95 (2), 476. doi: 10.1016/j.solmat.2010.09.005 (45) Lee, J. S.; Kovalenko, M. V.; Huang, J.; Chung, S. D.; Talapin, D. V. Nat. Nanotechnol. 2011, 6 (6), 348. doi: 10.1038/nnano.2011.46 (46) Kovalenko, M. V.; Scheele, M.; Talapin, D. V. Science 2009, 324 (5933), 1417. doi: 10.1126/science.1170524 (47) Seo, J.W.; Kim, W. J.; Kim, S. J.; Lee, K. S.; Cartwright, A. N.; Prasad, P. N. Appl. Phys. Lett. 2009, 94 (13), 133302. doi: 10.1063/1.3110969 (48) Wu, Y.; Zhang, G. Q. Nano Lett. 2010, 10 (5), 1628. doi: 10.1021/nl904095n (49) Kwon, S. C.; Moon, H. C.; Lim, K. G.; Bae, D.; Jang, S. S.; Shin, J. Y.; Park, J.; Lee, T.W.; Kim, J. K. J. Mater. Chem. A 2013, 1 (7), 2401. doi: 10.1039/c2ta01222g (50) Lek, J. Y.; Xing, G. C.; Sum, T. C.; Lam, Y. M. ACS Appl. Mater. Interfaces 2014, 6 (2), 894. doi: 10.1021/am4041515 (51) Sun, B. Q.; Snaith, H. J.; Dhoot, A. S.; Westenhoff, S.; Greenham, N. C. J. Appl. Phys. 2005, 97 (1), 014914-1. doi: 10.1063/1.1804613 (52) Zhou, Y.; Li, Y. C.; Zhong, H. Z.; Hou, J. H.; Ding, Y. Q.; Yang, C. H.; Li, Y. F. ACS Sym. Ser. 2006, 17 (16), 4041. (53) Dayal, S.; Kopidakis, N.; Olson, D. C.; Ginley, D. S.; Rumbles, G. Nano Lett. 2010, 10 (1), 239. doi: 10.1021/nl903406s (54) Ren , S. Q.; Chang, L. Y.; Lim, S. K.; Zhao, J.; Smith, M.; Zhao, N.; Bulovi?, V.; Bawendi, M.; Grade?ak, S. Nano Lett. 2011, 11 (9), 3998. doi: 10.1021/nl202435t (55) Chen, C. H.; Lai, C.W.; Wu, I. C.; Pan, H. R.; Chen, I. P.; Peng, Y. K.; Liu, C. L.; Chen, C. H.; Chou, P. T. Adv. Mater. 2011, 23 (45), 5451. doi: 10.1002/adma.201102775 (56) Leventis, H. C.; King, S. P.; Sudlow, A.; Hill, M. S.; Molloy, K. C.; Haque, S. A. Nano Lett. 2010, 10 (4), 1253. doi: 10.1021/nl903787j (57) Zhou, Y. F.; Riehle, F. S.; Yuan, Y.; Schleiermacher, H. F.; Niggemann, M.; Urban, G. A.; Krüger, M. Appl. Phys. Lett. 2010, 96 (1), 013304-1. doi: 10.1063/1.3280370 (58) Zhou, Y. F.; Eck, M.; Veit, C.; Zimmermann, B.; Rauscher, F.; Niyamakom, P.; Yilmaz, S.; Dumsch, I.; Allard, S.; Scherf, U. Sol. Energy Mater. Sol. Cells 2011, 95 (4), 1232. doi: 10.1016/j. solmat.2010.12.041 (59) Radychev, N.; Lokteva, I.; Witt, F.; Kolny-Olesiak, J.; Borchert, H.; Parisi, J. J. Phys. Chem. C 2011, 115 (29), 14111. doi: 10.1021/jp2040604 (60) Yu, W. L.; Zhang, H.; Fan, Z. X.; Zhang, J. H.; Wei, H. T.; Zhou, D.; Xu, B.; Li, F. H.; Tian, W. G.; Yang, B. Energy Environ. Sci. 2011, 4 (8), 2831. doi: 10.1039/c1ee01485d (61) Park, E. K.; Kim, J. H.; Ji, I. A.; Choi, H. M.; Kim, J. H.; Lim, K. T.; Bang, J. H.; Kim, Y. S. Microelectron Eng. 2014, 119, 169. doi: 10.1016/j.mee.2014.05.003 (62) Kang, Y.; Park, N. G.; Kim, D. Appl. Phys. Lett. 2005, 86 (11), 113101. doi: 10.1063/1.1883319 (63) Sun, B. Q.; Greenham, N. C. Phys. Chem. Chem. Phys. 2006, 8 (30), 3557. doi: 10.1039/b604734n (64) Wang, L.; Liu, Y. S.; Jiang, X.; Qin, D. H.; Cao, Y. J. Phys. Chem. C 2007, 111 (26), 9538. doi: 10.1021/jp0715777 (65) Wu, Y.; Zhang, G. Q. Nano Lett. 2010, 10 (5), 1628. doi: 10.1021/nl904095n (66) Lek, J. Y.; Xi, L. F.; Kardynal, B. E.; Wong, L. H.; Lam, Y. M. ACS Appl. Mater. Interfaces 2011, 3 (2), 287. doi: 10.1021/ am100938f (67) Jeltsch, K. F.; Schädel, M.; Bonekamp, J. B.; Niyamakom, P.; Rauscher, F.; Lademann, H.W. A.; Dumsch, I.; Allard, S.; Scherf, U.; Meerholz, K. Adv. Funct. Mater. 2012, 22 (2), 397. doi: 10.1002/adfm.201101809 (68) Kuo, C. Y.; Su, M. S.; Chen, G. Y.; Ku, C. S.; Lee, H. Y.; Wei, K. H. Energy Environ. Sci. 2011, 4 (6), 2316. doi: 10.1039/ c1ee01283e (69) Gur, I.; Fromer, N. A.; Chen, C. P.; Kanaras, A. G.; Alivisatos, A. P. Nano Lett. 2007, 7 (2), 409. |
[1] | 查吴送, 张连萍, 文龙, 康嘉晨, 骆群, 陈沁, 杨上峰, 马昌期. 溶剂工程调控钙钛矿薄膜中PbI2和PbI2(DMSO)的形成[J]. 物理化学学报, 0, (): 2003022 -0 . |
[2] | 杨贻顺, 周敏, 邢燕霞. 基于γ-石墨炔分子磁隧道结对称性依赖的输运性质[J]. 物理化学学报, 0, (): 2003004 -0 . |
[3] | 林飞宇, 杨英, 朱从潭, 陈甜, 马书鹏, 罗媛, 朱刘, 郭学益. 湿空气下制备稳定的CsPbI2Br钙钛矿太阳电池[J]. 物理化学学报, 0, (): 2005007 -0 . |
[4] | 刘弘禹, 孟钢, 邓赞红, 李蒙, 常鋆青, 代甜甜, 方晓东. VOCs分子的半导体型传感器识别检测研究进展[J]. 物理化学学报, 0, (): 2008018 -0 . |
[5] | 李开宁, 张梦曦, 欧小雨, 李睿娜, 李覃, 范佳杰, 吕康乐. 高活性氮化碳纳米片的制备策略[J]. 物理化学学报, 0, (): 2008010 -0 . |
[6] | 关黎明, 郭北斗, 贾鑫蕊, 谢关才, 宫建茹. 石墨烯膜质子传输巨大光效应的微观机理[J]. 物理化学学报, 0, (): 2007067 -0 . |
[7] | 卢岳, 葛杨, 隋曼龄. 紫外光辐照下CH3NH3PbI3基钙钛矿太阳能电池失效机制[J]. 物理化学学报, 0, (): 2007088 -0 . |
[8] | 王天杰, 王耀伟, 陈宇辉, 刘建鹏, 史会兵, 郭丽敏, 赵志伟, 刘春太, 彭章泉. 锂-空气电池的实用化之路:规避二氧化碳负面效应[J]. 物理化学学报, 0, (): 2009071 -0 . |
[9] | 李艳, 胡星盛, 黄静伟, 王磊, 佘厚德, 王其召. 铁基多相助催化剂光电化学水氧化研究进展[J]. 物理化学学报, 0, (): 2009022 -0 . |
[10] | 李嘉碧, 吴熙, 刘升卫. 表面氟化TiO2空心光催化剂制备及其应用[J]. 物理化学学报, 2021, 37(6): 200903038 -0 . |
[11] | 梅子慧, 王国宏, 严素定, 王娟. 微波辅助快速制备2D/1D ZnIn2S4/TiO2 S型异质结及其光催化制氢性能[J]. 物理化学学报, 2021, 37(6): 2009097 -0 . |
[12] | 费新刚, 谭海燕, 程蓓, 朱必成, 张留洋. 理论计算研究二维/二维BP/g-C3N4异质结的光催化CO2还原性能[J]. 物理化学学报, 2021, 37(6): 2010027 -0 . |
[13] | 邹广锐兴, 陈梓铭, 黎振超, 叶轩立. 蓝光钙钛矿发光二极管:机遇与挑战[J]. 物理化学学报, 2021, 37(4): 2009002 -0 . |
[14] | 周文韬, 陈怡华, 周欢萍. 提升基于钙钛矿的叠层太阳能电池稳定性的策略[J]. 物理化学学报, 2021, 37(4): 2009044 -0 . |
[15] | 许桂英, 薛荣明, 张默瑶, 李耀文, 李永舫. 基于吡嗪空穴传输层的合成及在p -i-n型钙钛矿太阳能电池中的应用[J]. 物理化学学报, 2021, 37(4): 2008050 -0 . |
|