物理化学学报 >> 2015, Vol. 31 >> Issue (6): 1137-1144.doi: 10.3866/PKU.WHXB201503311

催化和表面科学 上一篇    下一篇

用于费托合成的骨架Co@HZSM-5核壳催化剂

许可1, 程义1, 孙博1, 裴燕1, 闫世润1, 乔明华1, 张晓昕2, 宗保宁2   

  1. 1 复旦大学化学系, 能源材料化学协同创新中心, 上海市分子催化和功能材料重点实验室, 上海200433;
    2 中国石化石油化工科学研究院, 催化材料与反应工程国家重点实验室, 北京100083
  • 收稿日期:2015-02-02 修回日期:2015-03-31 发布日期:2015-06-05
  • 通讯作者: 乔明华, 宗保宁 E-mail:mhqiao@fudan.edu.cn;zongbn.ripp@sinopec.com
  • 基金资助:

    国家重点基础研究发展规划项目(973) (2012CB224804), 国家自然科学基金(21373055)及上海市科委科技基金(08DZ2270500)资助

Fischer-Tropsch Synthesis over Skeletal Co@HZSM-5 Core-Shell Catalysts

XU Ke1, CHENG Yi1, SUN Bo1, PEI Yan1, YAN Shi-Run1, QIAO Ming-Hua1, ZHANG Xiao-Xin2, ZONG Bao-Ning2   

  1. 1 Collaborative Innovation Center for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China;
    2 State Key Laboratory of Catalytic Materials and Reaction Engineering, Research Institute of Petroleum Processing, China Petroleum & Chemical Corporation, Beijing 100083, P. R. China
  • Received:2015-02-02 Revised:2015-03-31 Published:2015-06-05
  • Contact: QIAO Ming-Hua, ZONG Bao-Ning E-mail:mhqiao@fudan.edu.cn;zongbn.ripp@sinopec.com
  • Supported by:

    The project was supported by the National Key Basic Research Program of China (973) (2012CB224804), National Natural Science Foundation of China (21373055), and Science and Technology Commission of Shanghai Municipality, China (08DZ2270500).

摘要:

以骨架Co 为内核, 通过水热合成在其表面包覆HZSM-5 分子筛膜, 制备了具有核壳结构的骨架Co@HZSM-5 催化剂. 采用元素分析、氮物理吸附、粉末X射线衍射、扫描电子显微镜、氨脱附等手段对催化剂的物理化学性质进行了表征. 在气相费托合成反应中, 骨架Co@HZSM-5 核壳催化剂显示了比物理混合的骨架Co-HZSM-5催化剂更好的催化裂解作用, 故C5-C11汽油段产物选择性高. 通过改变水热时间, 对分子筛膜厚进行了调节, 发现适当的分子筛膜厚在保证催化剂具有较高活性的前提下, 使长链费托合成产物完全裂解, 高选择性地得到汽油段产物. 提高反应温度有利于费托合成反应的进行以及分子筛上裂解效率的提高, 但产物分布向短链烃方向移动. 在水热4天制备的骨架Co@HZSM-5核壳催化剂上及反应温度为250 ℃时, 得到了最佳反应结果, 汽油段产物选择性达79%, 说明费托合成活性中心与催化裂解酸中心之间形成了良好的协同作用.

关键词: 骨架Co, HZSM-5, 分子筛, 核壳结构, 费托合成

Abstract:

We used skeletal Co as the core to prepare a skeletal Co@HZSM-5 core-shell catalyst by growing an HZSM-5 membrane on skeletal Co via hydrothermal synthesis. The physicochemical properties of the catalyst were determined using elemental analysis, N2 physisorption, X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and NH3 desorption. In gas-phase Fischer-Tropsch synthesis (FTS), the skeletal Co@HZSM-5 core-shell catalyst was more efficient than a physically mixed skeletal Co-HZSM-5 catalyst in cracking long-chain hydrocarbons, giving higher selectivity for C5-C11 gasoline products. The thickness of the zeolite shell on the skeletal Co@HZSM-5 core-shell catalyst was easily tuned by adjusting the hydrothermal time. At a suitable zeolite shell thickness, the long-chain hydrocarbons were cracked completely, with high FTS activity, leading to high selectivity for the gasoline fraction. Increasing the reaction temperature resulted in higher FTS and cracking activities, but the product distribution shifted to short-chain hydrocarbons. For the optimum skeletal Co@HZSM-5 core-shell catalyst, which was subjected to hydrothermal treatment for 4 d, selectivity for the gasoline fraction reached 79% at 250 ℃, which shows an excellent synergistic effect between the FTS active sites and the acidic sites on this catalyst.

Key words: Skeletal Co, HZSM-5, Zeolite, Core-shell structure, Fischer-Tropsch synthesis

MSC2000: 

  • O643