物理化学学报 >> 2015, Vol. 31 >> Issue (11): 2131-2138.doi: 10.3866/PKU.WHXB201509171

催化和表面科学 上一篇    下一篇

钴-聚吡咯-碳载PtNi燃料电池催化剂的制备及应用

杨美妮1,2,林瑞1,2,*(),范仁杰1,2,赵天天1,2,曾浩1,2   

  1. 1 同济大学新能源汽车工程中心,上海201804
    2 同济大学汽车学院,上海201804
  • 收稿日期:2015-05-22 发布日期:2015-11-13
  • 通讯作者: 林瑞 E-mail:ruilin@tongji.edu.cn
  • 基金资助:
    国家自然科学基金(21276199);中央高校基本科研业务费专项资金及同济大学青年英才计划攀登高层项目

Preparation and Application of Pt-Ni Catalysts supported on Cobalt-Polypyrrole-Carbon for Fuel Cells

Mei-Ni. YANG1,2,Rui. LIN1,2,*(),Ren-Jie. FAN1,2,Tian-Tian. ZHAO1,2,Hao. ZENG1,2   

  1. 1 Clean Energy Automotive Engineering Center, Tongji University, Shanghai 201804, P. R. China
    2 School of Automotive Studies, Tongji University, Shanghai 201804, P. R. China
  • Received:2015-05-22 Published:2015-11-13
  • Contact: Rui. LIN E-mail:ruilin@tongji.edu.cn
  • Supported by:
    the National Natural Science Foundation of China(21276199);Fundamental Research Funds for the CentralUniversities, China, and Young Talents “Climbing” Program of Tongji University, China

摘要:

采用脉冲微波辅助化学还原合成新型载体钴-聚吡咯-碳(Co-PPy-C)负载PtNi催化剂.利用透射电镜(TEM)和X射线衍射(XRD)研究了催化剂的结构和形貌,此外,利用循环伏安(CV)和线性扫描伏安(LSV)等方法测试了催化剂的电化学活性及耐久性. PtNi/Co-PPy-C催化剂的金属颗粒直径约为1.77 nm,催化剂在载体上分布均匀且粒径分布范围较窄. XRD结果显示, PtNi/Co-PPy-C中Pt(111)峰最强, Pt主要是面心立方晶格.CV结果显示,其电化学活性面积(ECSA)为72.5 m2·g-1,明显高于商用催化剂Pt/C(JM)的56.9 m2·g-1.为进一步考查催化剂耐久性,电化学加速5000圈耐久性测试后, PtNi/Co-PPy-C颗粒发生明显集聚, ECSA衰减率和0.9 V下比质量活性衰减率分别为38.2%和63.9%.此外,采用有效面积为50 cm2的单电池用于评价自制催化剂的性能,发现在70 ℃且背压为50 kPa时电池的性能最好,此时自制PtNi/Co-PPy-C催化剂制备膜电极(MEA)的最大功率密度达到523 mW·cm-2.可见自制催化剂的电化学性能高于商用Pt/C(JM),在质子交换膜燃料电池(PEMFC)领域有一定的应用前景.

关键词: 质子交换膜燃料电池, 氧还原反应, Co-PPy-C, PtNi/Co-PPy-C, 电化学活性, 电化学稳定性

Abstract:

By using pulse-microwave assisted chemical reduction, we prepared a Pt-Ni alloy supported on a cobalt-polypyrrole-carbon (Co-PPy-C) catalyst. The catalyst microstructure and morphology were characterized by using transmission electron microscopy (TEM) and X-ray diffraction (XRD). The electrocatalytic performance and durability of the catalysts were measured with cyclic voltammetry (CV) and linear sweep voltammetry (LSV). The metal particles were well dispersed on the carbon support, and the particle size of PtNi/Co-PPy-C was about 1.77 nm. XRD showed that the Pt(111) diffraction peak was strongest, so the most of the Pt in the catalysts was in a face-centered cubic lattice. The electrochemical surface area (ECSA) of PtNi/Co-PPy-C (72.5 m2·g-1) was higher than that of Pt/C(JM) (56.9 m2·g-1). After an accelerated durability test for 5000 cycles, the particle size of PtNi/Co-PPy-C obviously increased. The degradation rate of ECSA and the mass activity (MA) of PtNi/Co-PPY-C were 38.2% and 63.9%, respectively. We applied the PtNi/Co-PPy-C catalyst after optimizing the membrane electrode assembly (MEA) with an area of 50 cm2. The fuel cell could be suitably operated at 70 ℃ with a back pressure of 50 kPa. At these conditions, the maximum power density of MEA by PtNi/Co-PPy-C was 523 mW·cm-2. The excellent performance of PtNi/Co-PPy-C makes it a promising catalyst for proton exchange membrane fuel cells (PEMFCs).

Key words: Proton exchange membrane fuel cell, Oxygen reduction reaction, Co-PPy-C, PtNi/Co-PPy-C, Electrochemical activity, Electrochemical stability

MSC2000: 

  • O646