物理化学学报 >> 2015, Vol. 31 >> Issue (11): 20832083-2090.doi: 10.3866/PKU.WHXB201510132

理论与计算化学 上一篇    下一篇

扶手椅型缺陷硫化钼纳米带电子性质的第一性原理计算

邵妍1,欧阳方平1,2,*(),彭盛霖2,刘琦1,贾治安1,邹慧1,*()   

  1. 1 中南大学物理与电子学院,先进材料超微结构与超快过程研究所,长沙410083
    2 中南大学粉末冶金研究院,粉末冶金国家重点实验室,长沙410083
  • 收稿日期:2015-05-07 发布日期:2015-11-13
  • 通讯作者: 欧阳方平,邹慧 E-mail:oyfp04@mails.tsinghua.edu.cn;zouhui1115@163.com
  • 基金资助:
    国家自然科学基金(51272291, 21103232, 11104356);湖南省杰出青年科学基金项目(2015JJ1020);粉末冶金国家重点实验室科研课题重点项目(2014091907);中南大学教师研究基金(2013JSJJ022)

First-Principles Calculations of Electronic Properties of Defective Armchair MoS2 Nanoribbons

Yan. SHAO1,Fang-Ping. OUYANG1,2,*(),Sheng-Lin. PENG2,Qi. LIU1,Zhi-An. JIA1,Hui. ZOU1,*()   

  1. 1 Institute of Super-microstructure and Ultrafast Process in Advanced Materials, School of Physics and Electronics, Central South University, Changsha 410083, P. R. China
    2 Powder Metallurgy Research Institute, State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, P. R. China
  • Received:2015-05-07 Published:2015-11-13
  • Contact: Fang-Ping. OUYANG,Hui. ZOU E-mail:oyfp04@mails.tsinghua.edu.cn;zouhui1115@163.com
  • Supported by:
    the National Natural Science Foundation of China(51272291, 21103232, 11104356);Natural Science Fund forDistinguished Young Scholars of Hunan Province of China(2015JJ1020);State Key Laboratory of Powder Metallurgy, China(2014091907);Central South University Research Fund for Faculty, China(2013JSJJ022)

摘要:

基于密度泛函理论的第一性原理计算,研究了含空位缺陷的扶手椅型二硫化钼纳米带的电子性质.发现缺陷会导致纳米带结构稳定性降低,单空位钼缺陷和三空位缺陷使得纳米带从半导体变成金属性,而单空位硫缺陷和两种双空位缺陷仅减小纳米带的带隙;电子态密度和能带的本征态表明缺陷纳米带费米能级附近的杂质态主要是缺陷态的贡献.研究了四类半导体性质的纳米带带隙与宽度的关系,对于完整的纳米带,带隙随宽度以3为周期振荡变化;而引入空位缺陷后,纳米带的带隙振荡不再具有周期且振荡幅度变小.同时发现,当缺陷的浓度变小后,缺陷仅使纳米带的带隙减小,不会使其变为金属性.这些结果有望打开其在新型纳电子器件中的应用潜能.

关键词: 二硫化钼, 纳米带, 空位缺陷, 第一性原理, 电子结构

Abstract:

We investigated the electronic properties of armchair MoS2 nanoribbons with vacancy defects using a first-principles method based on density functional theory. It was found that defects reduced the stability of armchair MoS2 nanoribbons. Mo vacancies and MoS2 triple vacancies can both change the band structures of nanoribbons from semiconductor to metallic, whereas S vacancies, 2S divacancies, and MoS divacancies only decrease the bandgap. The densities of states and eigenstates of the nanoribbons indicated that impurity bands near the Fermi level basically contributed to the defect states. The relationships between the bandgap and width of four types of semiconducting nanoribbons were simulated. Nanoribbons with no defects have a bandgap that oscillates with width in a period of three, but the bandgap changes nonperiodically for nanoribbons with S vacancies, 2S divacancies, and MoS divacancies. We also found that when the concentration of defects decreased, the vacancy defects did not destroy the nanoribbon semiconducting behavior but only decreased the bandgap. These results open up possibilities for MoS2 nanoribbon applications in novel nanoelectronic devices.

Key words: Molybdenum disulfide, Nanoribbon, Vacancy defect, First-principles, Electronic structure

MSC2000: 

  • O641