物理化学学报 >> 2016, Vol. 32 >> Issue (1): 28-47.doi: 10.3866/PKU.WHXB201512081

综述 上一篇    下一篇

TiO2表面光催化基元过程

郭庆1,周传耀1,马志博1,任泽峰2,樊红军1,杨学明1,*()   

  1. 1 中国科学院大连化学物理研究所,分子反应动力学国家重点实验室,辽宁大连 116023
    2 北京大学量子材料科学中心和物理学院,北京 100871
  • 收稿日期:2015-11-06 发布日期:2016-01-13
  • 通讯作者: 杨学明 E-mail:xmyang@dicp.ac.cn
  • 基金资助:
    国家自然科学基金(21203189, 21321091, 21173212, 21403224, 21573225, 21322310);国家重点基础研究发展规划项目(973)(2013CB834605);中国科学院重点部署项目(KGZD-EW-T05);分子反应动力学国家重点实验室开放课题(ZZ-2014-02)

Fundamental Processes in Surface Photocatalysis on TiO2

Qing GUO1,Chuan-Yao ZHOU1,Zhi-Bo MA1,Ze-Feng REN2,Hong-Jun FAN1,Xue-Ming YANG1,*()   

  1. 1 State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning Province, P.R.China
    2 International Center for Quantum Materials and School of Physics, Peking University, Beijing 100871, P.R.China
  • Received:2015-11-06 Published:2016-01-13
  • Contact: Xue-Ming YANG E-mail:xmyang@dicp.ac.cn
  • Supported by:
    the National Natural Science Foundation of China(21203189, 21321091, 21173212, 21403224, 21573225, 21322310);National Key Basic Research Program of China (973)(2013CB834605);Key Research Program of the Chinese Academy of Sciences(KGZD-EW-T05);the State Key Laboratory of Molecular Reaction Dynamics, China(ZZ-2014-02)

摘要:

在过去的几十年里,得益于二氧化钛(TiO2)作为光催化剂在光催化分解水、污染物降解方面的潜在应用,人们对TiO2光催化剂的开发、改良以及TiO2表面光催化机理的基础研究方面都投入了巨大的精力。因此,在超高真空环境下,利用不同的实验和理论方法,人们对TiO2表面(特别是金红石TiO2(110)表面)的热催化和光催化过程进行了大量的研究,以此来获得上述重要反应中的一些机理性的信息。本文中,将从TiO2的物质结构以及电子结构开始,然后着重介绍TiO2表面光生电荷(电子和空穴)的传输、捕获以及电子转移动力学方面的进展。在此基础上,总结了甲醇在金红石TiO2(110)、TiO2(011)以及锐钛矿TiO2(101)表面光化学基元反应过程的一些实验结果。这些结果不仅能增进我们对表面光催化基元过程的认识,同时也能激励我们进一步去研究表面光催化基元过程。最后,基于现有光化学实验结果,简短地讨论了我们对光催化反应机理的一点看法,并提出了一个可能的光催化模型,这可以引起人们对光催化反应机理更全面的思考。

关键词: 二氧化钛, 光催化, 电子-空穴分离, 非绝热过程, 基态势能面

Abstract:

Because of the potential applications of TiO2 in photocatalytic hydrogen production and pollutant degradation, over the past few decades we have witnessed increasing interest in and effort toward developing TiO2-based photocatalysts, and improving the efficiency and exploring the reaction mechanisms at the atomic and molecular levels. Because surface science studies on single crystal surfaces under ultrahigh vacuum (UHV) conditions can provide fundamental insights into these important processes, both the thermo-and photo-chemistry on TiO2, especially on rutile TiO2(110) surfaces, have been extensively investigated with a variety of experimental and theoretical approaches. In this review, commencing with the properties of TiO2, we then focus on charge transport and trapping, and electron transfer dynamics. Next, we summarize recent progress made in the study of elementary photocatalytic chemistry of methanol on mainly rutile TiO2(110), as well as in some studies on rutile TiO2(011) and anataseTiO2(101). These studies have provided fundamental insights into surface photocatalysis and stimulated new investigations in this exciting area. The implications of these studies for the development of new photocatalysis models are also discussed.

Key words: Titanium dioxide, Photocatalysis, Electron-hole separation, Nonadiabatic process, Ground-state potential energy surface

MSC2000: 

  • O643