物理化学学报 >> 2016, Vol. 32 >> Issue (6): 1416-1423.doi: 10.3866/PKU.WHXB2016032501

论文 上一篇    下一篇

基于激波管装置的乙烯氧化实验研究与动力学机理分析

熊小鹤1,丁艳军1,操晓波2,彭志敏1,*(),李永华2   

  1. 1 清华大学热能工程系,电力系统及发电设备控制与仿真国家重点实验室,北京100084
    2 华北电力大学能源动力与机械工程学院,河北保定071003
  • 收稿日期:2015-12-21 发布日期:2016-06-03
  • 通讯作者: 彭志敏 E-mail:kindlitbear0@163.com,apspect@126.com
  • 基金资助:
    51206086(国家自然科学基金)

Ethylene Oxidation Experimental Study and Kinetic Mechanism Analysis Based on Shock Tube

Xiao-He XIONG1,Yan-Jun DING1,Xiao-Bo CAO2,Zhi-Min PENG1,*(),Yong-Hua LI2   

  1. 1 Department of Thermal Engineering, State Key Laboratory of Power Systems, Tsinghua University, Beijing 100084, P. R. China
    2 School of Energy and Power Engineering, North China Electric Power University, Baoding 071003, Hebei Province, P. R. China
  • Received:2015-12-21 Published:2016-06-03
  • Contact: Zhi-Min PENG E-mail:kindlitbear0@163.com,apspect@126.com
  • Supported by:
    The project was supported by the National Natural Science Foundation of China(国家自然科学基金)

摘要:

在乙烯/氧气化学计量比为1,温度1092-1743 K,压力1.3-3.0 atm (1 atm = 101325 Pa)范围内,利用激波管测量了在摩尔分数为96%和75%两种不同氩气稀释度工况下的乙烯/氧气/氩气反应体系的着火延迟时间。实验结果表明,乙烯着火延迟时间在低稀释度下比高稀释度下短,着火延迟时间的对数与温度的倒数成良好线性关系,随着温度增加着火延迟时间缩短。此外,低稀释度下,能观察到爆轰(或者爆燃转爆轰)现象,而在高稀释度下,未发生爆轰现象。将四种不同机理模拟结果与实验结果比较,发现LLNL机理与实验结果吻合得较好。反应路径分析研究表明,稀释度对乙烯氧化反应路径无影响,而温度影响较大,温度增加,乙烯消耗路径由四条减少为三条,反应C2H4 + H (+ M) = C2H5 (+ M)由正向消耗乙烯变为逆向生成乙烯。

关键词: 激波管, 乙烯, 着火延迟, 爆燃, 爆轰, 氧化

Abstract:

This study measures the ignition delay times of C2H4/O2/Ar stoichiometric mixtures under Ar diluent mole fractions of 75% and 96% using the shock tube. The experimental temperatures range from 1092 to 1743 K and the pressures range from 1.3 to 3.0 atm (1 atm = 101325 Pa). The logarithm of the ignition delay time is found to be a linear function of the reciprocal temperature. The ignition delay time is shorter in the lower diluent concentrations, as well as decreasing with increasing temperature. Moreover, detonation (or deflagration to detonation) is observed in the lower but not the higher diluent concentrations. In comparative simulations of four different mechanisms, the LLNL mechanism best fits the experimental results. Reaction path analysis shows that the ethylene oxidation paths are affected by temperature rather than diluent rate. With increasing temperature, the number of ethylene oxidation paths decrease from four to three because of the predominance of the reverse reaction C2H4 + H (+ M) → C2H5 (+ M).

Key words: Shock tube, Ethylene, Ignition delay, Deflagration, Detonation, Oxidation

MSC2000: 

  • O643