物理化学学报 >> 2016, Vol. 32 >> Issue (9): 2280-2286.doi: 10.3866/PKU.WHXB201605124

论文 上一篇    下一篇

镁热还原法制备有序介孔Si/C锂离子电池负极材料及其电化学性能

唐艳平1,元莎1,郭玉忠1,*(),黄瑞安2,*(),王剑华1,杨斌2,戴永年2   

  1. 1 昆明理工大学,材料科学与工程学院,昆明650093
    2 昆明理工大学,真空冶金国家工程实验室,昆明650093
  • 收稿日期:2016-03-14 发布日期:2016-09-08
  • 通讯作者: 郭玉忠,黄瑞安 E-mail:ynguocn62@sina.com;rahuang2002@163.com
  • 基金资助:
    国家自然科学基金(51464025)

Magnesiothermic Reduction Preparation and Electrochemical Properties of a Highly Ordered Mesoporous Si/C Anode Material for Lithium-Ion Batteries

Yan-Ping TANG1,Sha YUAN1,Yu-Zhong GUO1,*(),Rui-An HUANG2,*(),Jian-Hua WANG1,Bin YANG2,Yong-Nian DAI2   

  1. 1 Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, P. R. China
    2 National Engineering Laboratory for Vacuum Metallurgy, Kunming University of Science and Technology, Kunming 650093, P. R. China
  • Received:2016-03-14 Published:2016-09-08
  • Contact: Yu-Zhong GUO,Rui-An HUANG E-mail:ynguocn62@sina.com;rahuang2002@163.com
  • Supported by:
    National Natural Science Foundation of China(51464025)

摘要:

以SBA-15为前驱体,在660 ℃下通过镁热还原反应得到介孔硅材料,并对其进行碳包覆处理,成功地制备了有序介孔Si/C(OMP-Si/C)复合材料。该OMP-Si/C材料保留了SBA-15模板的有序蜂窝孔道,并且形成具有高堆积密度的莲藕链束结构。文中还提出了一个SBA-15镁热还原液态环境反应模型,探讨了660 ℃下硅的高度有序介孔与莲藕链束结构的形成机理。利用X射线衍射(XRD)仪、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、氮气吸脱附法及拉曼光谱对样品物相和微观形貌进行了表征。这种高度有序介孔Si/C复合材料具有优异的电化学性能,展现出其在第二代锂电池负极材料领域中的潜在应用价值。

关键词: 锂离子电池, 介孔硅, 负极材料, 纳米复合材料, 镁热还原法

Abstract:

A highly ordered mesoporous Si/C composite was prepared by magnesiothermic reduction method, using SBA-15 as the precursor at 660 ℃ with subsequent carbon coating. This Si/C composite preserved the ordered honeycomb pore channels of SBA-15 and exhibited a lotus root-like structure with high packing density. A liquid ambient reaction model is proposed to explain the reaction between SBA-15 and magnesium powder at 660 ℃ as well as the mechanism by which the highly ordered mesoporous structure is generated. The phase composition and morphology of this material were analyzed by X-ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen adsorption-desorption and Raman spectroscopy. The excellent electrochemical performance of the as-prepared material suggests potential applications as an anode material in second-generation Li-ion batteries.

Key words: Li-ion battery, Mesoporous silicon, Anode material, Nanocomposite, Magnesiothermic reduction method

MSC2000: 

  • O646