物理化学学报 >> 2017, Vol. 33 >> Issue (1): 255-261.doi: 10.3866/PKU.WHXB201610181

论文 上一篇    

煤基碳泡沫/聚氨酯相变复合材料的制备及储热性能

吴文昊1,黄心宇1,姚锐敏1,陈人杰1,李凯2,邹如强1,*()   

  1. 1 北京大学工学院材料科学与工程系,北京100871
    2 北京防化研究院第一研究所,北京100191
  • 收稿日期:2016-07-27 发布日期:2016-12-29
  • 通讯作者: 邹如强 E-mail:rzou@pku.edu.cn
  • 基金资助:
    国家自然科学基金(51322205);国家自然科学基金(21371014);北京市科学技术委员会专项资金(Z15111000090000);北京市科学技术委员会专项资金(Z151100000915074)

Synthesis and Properties of Polyurethane/Coal-Derived Carbon Foam Phase Change Composites for Thermal Energy Storage

Wen-Hao WU1,Xin-Yu HUANG1,Rui-Min YAO1,Ren-Jie CHEN1,Kai LI2,Ru-Qiang ZOU1,*()   

  1. 1 Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, P. R. China
    2 Research Institute of Chemical Defence, Beijing 100191, P. R. China
  • Received:2016-07-27 Published:2016-12-29
  • Contact: Ru-Qiang ZOU E-mail:rzou@pku.edu.cn
  • Supported by:
    National Natural Science Foundation of China(51322205);National Natural Science Foundation of China(21371014);Specialized Research Fund of Beijing Municipal Science & Technology Commission, China(Z15111000090000);Specialized Research Fund of Beijing Municipal Science & Technology Commission, China(Z151100000915074)

摘要:

以煤基碳泡沫(CCF)作为骨架材料来封装改性固-固相变材料聚氨酯(PU),并实现其功能化应用。使用场发射扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线粉末衍射仪(PXRD)、傅里叶变换红外(FT-IR)光谱仪、热重分析仪(TGA)、差示扫描量热(DSC)分析仪、热导测试仪对所得到的复合材料(PU@CCF)进行结构和特性表征。结果显示,聚乙二醇(PEG-6000)与异氰酸酯(HDI)反应制备聚氨酯的最优摩尔比例为1:2,煤基碳泡沫可以很好地阻止聚氨酯从复合材料中泄露出来。相较于聚乙二醇,复合材料的导热率上升了54%,经过200次热循环,复合材料保持了良好的稳定性,而且其相变主体材料PU的过冷度降低了10℃以上。基于碳泡沫骨架良好的导电性,加载高于0.8 V的低电压就可实现聚氨酯电热相变储能,在1.1 V电压驱动下,其电热转换效率可达75%。该工作是目前报道的最低电压下可实现电热相变转换的复合功能材料,为实现低成本相变复合材料的制备与功能化提供重要参考。

关键词: 相变材料, 热能存储, 导热率, 碳泡沫, 电热转换

Abstract:

In this article, we used coal-derived carbon foam (CCF) as a skeleton material to encapsulate the solid-to-solid phase change material polyurethane (PU) to provide PU@CCF composites for functional applications. The obtained PU@CCF composites were characterized by field-emission scanning electron microscopy (SEM), transmission electron microscopy (TEM), powder X-ray diffraction (PXRD), Fourier transform infrared (FT-IR) spectroscopy, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and thermal conductivity measurements. The results illustrated that the most preferred ratio of polyethylene glycol (PEG-6000) to hexamethylene diisocyanate (HDI) to synthesize PU was 1:2 and the CCF skeleton prevented PU leakage during the phase change process. Compared with PEG-6000, the thermal conductivity of the PU@CCF composite was raised by 54%, its cycle thermal stability was remarkable after 2000 cycles, and its supercooling degree was lowered by more than 10℃. For electro-to-heat energy conversion, the phase transition behavior of the obtained PU@CCF could be induced under an electron voltage as low as 0.8 V with 75% conversion efficiency at 1.1 V. This functional phase change composite realizes electric-heat conversion under the lowest loading voltage reported to date, providing an important benchmark for the preparation and functionalization of low-cost phase change composites.

Key words: Phase change material, Thermal energy storage, Thermal conductivity, Carbon foam, Electro-to-heat energy conversion

MSC2000: 

  • O642