物理化学学报 >> 2018, Vol. 34 >> Issue (2): 208-212.doi: 10.3866/PKU.WHXB201707031

所属专题: 密度泛函理论中的化学概念特刊

论文 上一篇    下一篇

Effect of Pressure on Cesium Iodide Band Gap

CEDILLO Andrés1,*(),CORTONA Pietro2   

  1. 1 Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, 09340 México, DF, México
    2 Laboratoire Structures, Propriétés et Modélisation des Solides, CNRS UMR 8580, Université Paris-Saclay, CentraleSupélec, Grande Voie des Vignes, F-92295 Chatenay-Malabry, France
  • 收稿日期:2017-05-05 发布日期:2017-11-13
  • 通讯作者: CEDILLO Andrés E-mail:cedillo@xanum.uam.mx

Effect of Pressure on Cesium Iodide Band Gap

Andrés CEDILLO1,*(),Pietro CORTONA2   

  1. 1 Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, 09340 México, DF, México
    2 Laboratoire Structures, Propriétés et Modélisation des Solides, CNRS UMR 8580, Université Paris-Saclay, CentraleSupélec, Grande Voie des Vignes, F-92295 Chatenay-Malabry, France
  • Received:2017-05-05 Published:2017-11-13
  • Contact: Andrés CEDILLO E-mail:cedillo@xanum.uam.mx

摘要:

The evolution of cesium iodide band gap as a function of pressure is studied in the range from 0 to 60 GPa. Within this range, two structural phase transitions occurred, and the band gap was affected by the compression pressure and structural rearrangement. The band gap estimation under pressure, as obtained by the density functional theory methods, successfully reproduced the experimental trend of the optical gap and electrical resistivity, namely, a general decreasing tendency, an early maximum, and a discontinuous peak around 40 GPa.

关键词: Pressure-induced phase transition, Crystalline structure, Band gap, Resistivity

Abstract:

The evolution of cesium iodide band gap as a function of pressure is studied in the range from 0 to 60 GPa. Within this range, two structural phase transitions occurred, and the band gap was affected by the compression pressure and structural rearrangement. The band gap estimation under pressure, as obtained by the density functional theory methods, successfully reproduced the experimental trend of the optical gap and electrical resistivity, namely, a general decreasing tendency, an early maximum, and a discontinuous peak around 40 GPa.

Key words: Pressure-induced phase transition, Crystalline structure, Band gap, Resistivity