Please wait a minute...
物理化学学报  2018, Vol. 34 Issue (5): 483-491    DOI: 10.3866/PKU.WHXB201709111
论文     
RbCl和CsCl水溶液结构的X射线散射及经验势结构精修模拟
周永全1,曾我良枝2,山口敏男2,房艳1,房春晖1,*()
1 中国科学院青海盐湖研究所,青海西宁810008
2 福冈大学理学院化学系,福冈814-0180,日本
Structure of Aqueous RbCl and CsCl Solutions Using X-Ray Scattering and Empirical Potential Structure Refinement Modelling
Yongquan ZHOU1,Yoshie SOGA2,Toshio YAMAGUCHI2,Yan FANG1,Chunhui FANG1,*()
1 Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, Qinghai Province, P. R. China
2 Department of Chemistry, Faculty of Science, Fukuoka University, 8-19-1 Nanakuma, Jonan, Fukuoka 814-0180, Japan
 全文: PDF(2131 KB)   HTML 输出: BibTeX | EndNote (RIS) |
摘要:

采用X射线散射法研究了RbCl和CsCl水溶液的结构,利用基于经验势的结构精修(EPSR)方法获得了溶液中的水合Cl-、Rb+、Cs+、离子缔合及本体水的对径向分布函数、配位数分布及空间密度分布(3D结构)等结构信息。在水溶液中,Cl-具有相对稳定的6水合结构,其水合距离为0.321 nm,外加阳离子对其水合作用的影响不明显。7.3 ± 1.4个水分子与Rb+水合,其特征水合距离为0.297 nm,8.4 ± 1.6个水分子与Cs+水合其水合距离为0.312 nm。Cs+不具有第二水合层,而Rb+表现出了更强的水合能力,具有较明显的第二水合层。Cl-、Rb+及Cs+常被认为是“结构破坏”型离子。从微观角度来看这种所谓的“结构破坏”主要体现在破坏了本体水分子的第二水合层保持四面体构型的趋势。RbCl和CsCl水溶液中部分存在着Rb-Cl和Cs-Cl直接接触离子对,在1.0 mol·dm-3的溶液中Rb-Cl及Cs-Cl的特征距离分别为0.324和0.336 nm,溶剂分割离子对的距离则都在0.6 nm左右。相对于Cs+,Rb+与Cl-离子之间表现出了更强的缔合能力。

关键词: RbClCsCl溶液结构X射线散射EPSR    
Abstract:

X-ray scattering measurements were performed on 1.0 mol·dm-3 RbCl and CsCl aqueous solutions. The X-ray structure factors were subjected to empirical potential structure refinement to extract detailed structural information on hydrated Cl-, Rb+, Cs+, and ion association, as well as bulk water, in terms of the individual site-site pair correlation functions, coordination number distributions, and spatial density functions (three-dimensional structure). Cl- is found to have a relatively stable six-fold coordination of water molecules with a Cl--H2O distance of 0.321 nm, and without a significant cation effect on its local structure. Rb+ is surrounded on an average by 7.3 ± 1.4 water molecules with a Rb+-H2O distance of 0.297 nm, whereas 8.4 ± 1.6 water molecules hydrate Cs+ at a Cs+-H2O distance of 0.312 nm. It is likely that Rb+ has a stronger hydration shell than Cs+, as evidenced by the presence of the second hydration shell of the former. Contact ion-pairs are partially formed in both solutions and characterized by the Rb+-Cl- and Cs+-Cl- distances of 0.324 nm and 0.336 nm. The solvent-separated ion pairs for both ions are discernible at around 0.6 nm. Rb+ has a stronger electrostatic interaction and hence a relatively stronger ion association with Cl- than Cs+.

Key words: RbCl    CsCl    Solution structure    X-ray scattering    EPSR
收稿日期: 2017-08-07 出版日期: 2017-09-11
中图分类号:  O641  
基金资助: 青海省自然科学基金(2015-ZJ-945Q);中国科学院青年创新促进会(2017467)
通讯作者: 房春晖     E-mail: fangch@isl.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
周永全
曾我良枝
山口敏男
房艳
房春晖

引用本文:

周永全,曾我良枝,山口敏男,房艳,房春晖. RbCl和CsCl水溶液结构的X射线散射及经验势结构精修模拟[J]. 物理化学学报, 2018, 34(5): 483-491, 10.3866/PKU.WHXB201709111

Yongquan ZHOU,Yoshie SOGA,Toshio YAMAGUCHI,Yan FANG,Chunhui FANG. Structure of Aqueous RbCl and CsCl Solutions Using X-Ray Scattering and Empirical Potential Structure Refinement Modelling. Acta Phys. -Chim. Sin., 2018, 34(5): 483-491, 10.3866/PKU.WHXB201709111.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201709111        http://www.whxb.pku.edu.cn/CN/Y2018/V34/I5/483

System rRb-O(CNRb-O) Method System rCs-O(CNCs-O) Method
0.22-3.97 M RbСl17 0.315 (~7.5-6.1) MD 15.1-32.3 M CsF 18 0.32(8.03-5.54) XRD
4 M RbСl 19 0.305 (6.9) AXD 1.0-3.9 M CsI 18 0.31(6.73-5.13) XRD
1%-10% RbСl 20 ~0.285 (7.0-5.0) RMС 1.5-15.0 M CsCl 21 0.31(8.2-6.5) RMС
~2 M Rb+22 0.295 (6.59) AIMD 1Cs++63H2O 23 0.3013 (8.2~7.0) FPMD
1Rb++63H2O 23 0.283 (8.0-7.0) FPMD 0.1-0.9 M RbI 24 0.307 (/) XRD
0.1-0.9 M RbI 24 0.298 (/) XRD 1.5-2.5 M Cs2SO4 25 0.325 (6.0) XRD
Table 1  Structural parameters of Rb+ and Cs+ hydration under ambient condition obtained by experimental and theoretical methods.
System c/(mol·dm-3) d/(g·cm-3) μ/cm-1 V/nm3
Water / 0.997 1.12 0.03000
RbCl 0.9782 1.015 4.64 0.03104
CsCl 0.9506 1.118 3.51 0.03123
Table 2  Composition and properties of the sample solutions
ε/(kJ·mol-1) σ/nm Mass Charge
Ow 44 0.65 0.316 16.00 -0.8476
Hw 44 0.00 0.00 1.00 0.4238
Rb+ 45 0.0005 0.560 85.468 1.000
Cs+ 45 0.0005 0.620 132.905 1.000
Cl- 45 0.71 0.402 35.453 -1.000
Table 3  Reference potential parameters used in EPSR modelling
Fig 1  Scheme for the calculation flow of EPSR
Fig 2  Experimentally determined (points) and EPSR simulated (solid lines) F(Q) and G(r) for the 1.0 mol·dm-3 aqueous RbCl and CsCl solutions.
Fig 3  The pair correlation functions (a) and the coordination number distributions (b) of Cl-O(W) in the 1.0 mol·dm-3 aqueous RbCl and CsCl solutions from EPSR modelling.
Fig 4  The pair correlation functions (a) and the coordination number distributions (b) of Rb-O(W) and Cs-O(W) in 1.0 mol·dm-3 aqueous RbCl and CsCl solutions from EPSR modelling.
Fig 5  Hydration structures of Cl- (a), Rb+ (b) and Cs+ (c) extracted from a random snapshot of EPSR modeling.
Interaction pairs r(Ⅰ, peak)/nm r-range/nm CN
water O(W)-O(W, Ⅰ) 0.279 0.234-0.345 4.8 ± 1.0
O(W)-O(W, Ⅱ) 0.453 0.348-0.567 19.8 ± 2.2
RbCl Rb-O(W, Ⅰ) 0.297 0.261-0.378 7.3 ± 1.4
Rb-O(W, Ⅱ) 0.489 0.378-0.591 18.7 ± 2.4
Cl-O(W) 0.321 0.288-0.369 5.9 ± 1.1
O(W)-O(W, Ⅰ) 0.273 0.234-0.324 3.8 ± 0.9
O(W)-O(W, Ⅱ) 0.390 0.327-0.558 20.6 ± 2.2
Rb-Cl 0.324 0.291-0.405 0.4 ± 0.4
CsCl Cs-O(W) 0.312 0.285-0.413 8.4 ± 1.6
Cl-O(W) 0.321 0.285-0.369 6.0 ± 1.1
O(W)-O(W, Ⅰ) 0.273 0.234-0.324 3.8 ± 0.9
O(W)-O(W, Ⅱ) 0.390 0.327-0.567 19.7 ± 2.2
Cs-Cl 0.336 0.300-0.446 0.3 ± 0.4
Table 4  The positions and average coordination number of the atom pairs in the sample solutions.
Fig 6  The pair correlation functions (a) and the coordination number distributions (b) of O(W)-O(W) in the 1.0 mol·dm-3 RbCl and CsCl solutions and pure water from EPSR modelling.
Fig 7  Spatial density distribution functions of the neighboring water molecules around a central water molecule. The pure water(top), 1.0 mol·dm-3 aqueous RbCl solution (middle) and 1.0 mol·dm-3 aqueous CsCl solutions (bottom).
Fig 8  The pair correction functions (a) and the coordination number distributions (b) of Rb-Cl and Cs-Cl in1.0 mol·dm-3 aqueous RbCl and CsCl solutions from EPSR modelling.
Fig 9  Local structure of the contact ion pairs in 1.0 mol·dm-3 aqueous RbCl (a) and CsCl (b) solutions extracted from snapshot of EPSR modelling.
1 Xu C. ; Wang J. C. ; Chen J. Solvent Extr. Ion Exc. 2012, 30, 623.
doi: 10.1080/07366299.2012.700579
2 Lei H. ; Li S. ; Zhai Q. ; Zhang H. ; Jiang Y. ; Hu M. Acta Phys. -Chim. Sin. 2012, 28, 1599.
doi: 10.3866/PKU.WHXB201204281
雷红; 李淑妮; 翟全国; 张晖英; 蒋育澄; 胡满成. 物理化学学报, 2012, 28, 1599.
doi: 10.3866/PKU.WHXB201204281
3 Zhang H. ; Wang S. ; Wang R. ; Lin C. ; Zhang X. ; Wang X. Acta Phys. -Chim. Sin. 2000, 16, 952.
doi: 10.3866/PKU.WHXB20001016
张惠源; 王淑兰; 王榕树; 林灿生; 张先业; 王孝荣. 物理化学学报, 2000, 16, 952.
doi: 10.3866/PKU.WHXB20001016
4 Izatt R. M. ; Rytting J. H. ; Nelson D. P. ; Haymore B. L. Science 1969, 164, 443.
doi: 10.1126/science.164.3878.443
5 Maleknia S. ; Brodbelt J. J.Am. Chem. Soc. 1993, 115, 2837.
doi: 10.1021/ja00060a034
6 Glendening E. D. ; Feller D. ; Thompson M. A. J.Am. Chem. Soc. 1994, 116, 10657.
doi: 10.1021/ja00102a035
7 Inokuchi Y. ; Ebata T. ; Rizzo T. R. ; Boyarkin O. V. J.Am. Chem. Soc. 2014, 136, 1815.
doi: 10.1021/ja4086066
8 Rodriguez J. D. ; Vaden T. D. ; Lisy J. M. J.Am. Chem. Soc. 2009, 131, 17277.
doi: 10.1021/ja906185t
9 Inokuchi Y. ; Boyarkin O. V. ; Kusaka R. ; Haino T. ; Ebata T. ; Rizzo T. R. J.Phys. Chem. A 2012, 116, 4057.
doi: 10.1021/jp3011519
10 Richens D. T. The Chemistry of Aqua Ions: Synthesis, Structure and Reactivity: A Tour Through the Periodic Table of the Elements Wiley: Chichester, UK 1997, pp. 24-68.
11 Fawcett W. R. Liquids, Solutions, and Interfaces from Classical Macroscopic Descriptions to Modern Microscopic Details Oxford Univesity Press: New York, USA 2004, pp. 204-254.
12 Hao L. ; Zhao Y. ; Zhao J. ; Jiang X. ; Yang Z. ; Zhao D. Acta Phys. -Chim. Sin. 2016, 32, 2921.
doi: 10.3866/PKU.WHXB201609193
赫兰兰; 郭宇; 赵健; 姜新蕊; 杨忠志; 赵东霞. 物理化学学报, 2016, 32, 2921.
doi: 10.3866/PKU.WHXB201609193
13 Galib M. ; Baer M. D. ; Skinner L. B. ; Mundy C. J. ; Huthwelker T. ; Schenter G. K. ; Benmore C. J. ; Govind N. ; Fulton J. L. J.Chem. Phys. 2017, 146, 084504.
doi: 10.1063/1.4975608
14 Ohtaki H. ; Radnai T. Chem. Rev. 1993, 93, 1157.
doi: 10.1021/cr00019a014
15 Cummings S. ; Enderby J. E. ; Neilson G. W. ; Newsome J. R. ; Howe R. A. ; Howells W. S. ; Soper A. K. Nature 1980, 287, 714.
doi: 10.1038/287714a0
16 Smirnov P. R. ; Trostin V. N. Russ. J. Gen. Chem. 2007, 77, 2101.
doi: 10.1134/S1070363207120043
17 Du H. ; Rasaiah J. C. ; Miller J. D. J.Phys. Chem. B 2007, 111, 209.
doi: 10.1021/jp064659o
18 Mile V. ; Gereben O. ; Kohara S. ; Pusztai L. J.Phys. Chem. B 2012, 116, 9758.
doi: 10.1021/jp301595m
19 Ramos S. ; Barnes A. C. ; Neilson G. W. ; Capitan M. J.Chem. Phys. 2000, 258, 171.
doi: 10.1016/S0301-0104(00)00132-4
20 Ildikó H. ; László P. J. Phys.: Condens. Matter 2007, 19, 335208.
doi: 10.1088/0953-8984/19/33/335208
21 Mile V. ; Pusztai L. ; Dominguez H. ; Pizio O. J.Phys. Chem. B 2009, 113, 10760.
doi: 10.1021/jp900092g
22 Buda A. ; Ali S. M. J.Mol. Liq. 2013, 179, 34.
doi: doi/abs/10.1021/ic030310t
23 Ikeda T. ; Boero M. J.Chem. Phys. 2012, 137, 041101.
doi: 10.1063/1.4742151
24 Mä hler J. ; Persson I. Inorg. Chem. 2011, 51, 425.
doi: 10.1021/ic2018693
25 Ling L. ; Fang C. ; Fang Y. Salt Lake Res. 2006, 15, 45.
林联君; 房春晖; 房艳; 秦绪锋. 盐湖研究, 2006, 15, 45.
26 Ansell S. ; Barnes A. C. ; Mason P. E. ; Neilson G. W. ; Ramos S. Biophys. Chem. 2006, 124, 171.
doi: 10.1016/j.bpc.2006.04.018
27 Neilson G. W. ; Mason P. E. ; Ramos S. ; Sullivan D. Philos. Trans. R. Soc. London, Ser. A 2001, 359, 1575.
doi: 10.1098/rsta.2001.0866
28 Zhou Y. ; Fang C. ; Fang Y. ; Zhu F. ; Tao S. ; Xu S. Russ. J. Phys. Chem. A 2012, 86, 1236.
doi: 10.1134/S0036024412060349
29 Thorpe S. J. L. ; Thorpe M. F. Local Structure from Diffraction Kluwer Academic Publishers: New York, USA 2002, pp. 59-85.
30 Soper A. K. Chem. Phys. 1996, 202, 295.
doi: 10.1016/0301-0104(95)00357-6
31 Soper A. K. Phys. Rev. B 2005, 72, 104204.
doi: 10.1103/PhysRevB.72.104204
32 Soper A. K. Mol. Simul. 2012, 38, 1171.
doi: 10.1080/08927022.2012.732222
33 Yamaguchi T. ; Fujimura K. ; Uchi K. ; Yoshida K. ; Katayama Y. J.Mol. Liq. 2012, 176, 44.
doi: 10.1016/j.molliq.2012.08.021
34 Shalaev E. ; Soper A. K. J.Phys. Chem. B 2016, 120, 7289.
doi: 10.1021/acs.jpcb.6b06157
35 Mancinelli R. ; Botti A. ; Bruni F. ; Ricci M. A. ; Soper A. K. J. Phys. Chem. B 2007, 111, 13570.
doi: 10.1021/jp075913v
36 Bowron D. T. ; Moreno S. D. Coord. Chem. Rev. 2014, 277, 2.
doi: 10.1021/jp202961t
37 Krogh-Moe J. Acta Crystallogr. 1956, 9, 951.
doi: 10.1107/S0365110X56002655
38 Norman N. Acta Crystallogr. 1957, 10, 370.
doi: 10.1107/S0365110X57001085
39 Prince E. International Tables for Crystallography Kluwer Academic Publishers: London, UK 2004, pp. 230-235, 255, 555-556, 658.
40 Hubbell J. H. ; Veigele W. J. ; Briggs E. A. ; Brown R. T. ; Cromer D. T. ; Howerton R. J. J. Phys. Chem. Ref. Data 1975, 4 (3), 471.
doi: 10.1063/1.555523
41 Kaplow R. ; Strong S. L. ; Averbach B. L. Phys. Rev. 1965, 138, A1336.
doi: 10.1103/PhysRev.138.A1336
42 Johansson G. Sandström M. Chemica Scripta 1973, 4, 195.
doi: 10.1107/S0021889875009594
43 Zhou Y. ; Fang C. ; Fang Y. Acta Phys. -Chim. Sin. 2010, 26, 2323.
doi: 10.3866/PKU.WHXB20100903
周永全; 房春晖; 房艳. 物理化学学报, 2010, 26, 2323.
doi: 10.3866/PKU.WHXB20100903
44 Yamaguchi T. ; Lee K. ; Yamauchi M. ; Fukuyama N. ; Yoshida K. Bunseki Kagaku 2015, 64, 295.
doi: 10.2116/bunsekikagaku.64.295
45 Jensen K. P. ; Jorgensen W. L. J. Chem. Theory Comput. 2006, 2, 1499.
doi: 10.1021/ct600252r
46 D'Angelo P. ; Persson I. Inorg. Chem. 2004, 43, 3543.
doi: 10.1021/ic030310t
47 Smirnov P. R. ; Grechin O. V. Russ. J. Coord. Chem. 2013, 39, 685.
doi: 10.1134/S1070328413090078
48 Soper A. K. Chem. Phys. 2000, 258, 121.
doi: 10.1016/S0301-0104(00)00179-8
49 Soper A. K. J.Chem. Phys. 1994, 101, 6888.
doi: 10.1063/1.468318
50 Marcus Y. Chem. Rev. 2009, 109, 1346.
doi: 10.1021/cr8003828
51 Chen T. ; Hefter G. ; Buchner R. J.Phys. Chem. A 2003, 107, 4025.
doi: 10.1021/jp026429p
[1] 袁俊生,刘子禹,李非,李申予. 利用X射线衍射和拉曼光谱法对KCl和NaCl混合溶液微观结构的研究[J]. 物理化学学报, 2016, 32(5): 1143-1150.
[2] 柴晓燕, 朱才镇, 何传新, 张广照, 刘剑洪. 液态丙烯腈低聚物修复聚丙烯腈基碳纤维微孔缺陷[J]. 物理化学学报, 2014, 30(4): 753-760.
[3] 周永全, 房春晖, 房艳. 过饱和五硼酸钠溶液结构[J]. 物理化学学报, 2010, 26(09): 2323-2330.
[4] 黄飞娟, 杜为红, 王保怀. 含有D型氨基酸的新型毒肽——芋螺马芬在pH 5的溶液结构[J]. 物理化学学报, 2008, 24(09): 1558-1562.
[5] 冯望生;房艳;徐继香;房春晖;贾全杰;王焕华;姜晓明. 高斯多峰拟合在径向分布函数中的应用[J]. 物理化学学报, 2008, 24(03): 497-501.
[6] 隋震鸣;陈晓;王庐岩;许丽梅;杨春杰. 溶致液晶中金属纳米粒子的掺杂及其作用机制研究[J]. 物理化学学报, 2006, 22(06): 737-743.
[7] 庄文昌;陈晓;杨春杰;王庐岩;柴永存. 小角X射线散射表征AOT/水层状溶致液晶的有序性[J]. 物理化学学报, 2005, 21(09): 1055-1058.
[8] 徐华;徐耀;李志宏. PVP改性氧化硅溶胶的微结构和流变性[J]. 物理化学学报, 2005, 21(03): 300-305.
[9] 徐耀;李志宏;王俊;范文浩;吴东;董宝中;孙予罕. TEOS-MTES基SiO2溶胶微结构的SAXS研究[J]. 物理化学学报, 2002, 18(09): 781-785.
[10] 石磊, 张小岗, 张喜丰, 杨冠英, 韩布兴, 闫海科. 混合超临界流体的密度及分子间相互作用[J]. 物理化学学报, 2000, 16(01): 31-35.
[11] 李林尉, 褚德萤, 刘瑞麟. RbCl由H2O至混合溶剂(H2O-DMF)标准迁移熵的测定[J]. 物理化学学报, 1999, 15(03): 265-268.
[12] 李林尉, 褚德萤, 刘瑞麟. RbCl在H2O-DMF混合溶剂中活度系数的测定[J]. 物理化学学报, 1998, 14(08): 691-697.
[13] 韩甫田,陈济舟,王俊桥,伍宣池,宾仁茂. 用对称透射二维WAXS强度研究PET取向非晶态结构[J]. 物理化学学报, 1996, 12(01): 39-43.
[14] 程兆年,丁弘,雷雨,许立. RbCl熔解的分子动力学模拟研究[J]. 物理化学学报, 1995, 11(10): 890-895.
[15] 朱小蕾,金安定. 原子结构参数的改进Xa法计算[J]. 物理化学学报, 1995, 11(07): 659-662.