Please wait a minute...
物理化学学报  2018, Vol. 34 Issue (5): 514-518    DOI: 10.3866/PKU.WHXB201710101
所属专题: 密度泛函理论中的化学概念特刊
论文     
Generalized Hirshfeld Partitioning with Oriented and Promoted Proatoms
HEIDAR-ZADEH Farnaz1,2,3,AYERS Paul W.1,*()
1 Department of Chemistry & Chemical Biology; McMaster University; Hamilton, Ontario, L8P 4Z2, Canada
2 Department of Inorganic and Physical Chemistry, Ghent University, Krijgslaan 281 (S3), 9000 Gent, Belgium
3 Center for Molecular Modeling, Ghent University, Technologiepark 903, 9052 Zwijnaarde, Belgium
Generalized Hirshfeld Partitioning with Oriented and Promoted Proatoms
Farnaz HEIDAR-ZADEH1,2,3,Paul W. AYERS1,*()
1 Department of Chemistry & Chemical Biology; McMaster University; Hamilton, Ontario, L8P 4Z2, Canada
2 Department of Inorganic and Physical Chemistry, Ghent University, Krijgslaan 281 (S3), 9000 Gent, Belgium
3 Center for Molecular Modeling, Ghent University, Technologiepark 903, 9052 Zwijnaarde, Belgium
 全文: PDF(294 KB)   HTML 输出: BibTeX | EndNote (RIS) |
摘要:

In this study, we show how to generalize Hirshfeld partitioning methods to possibly include non-spherical proatom densities. While this generalization is numerically challenging (requiring global optimization of a large number of parameters), it is conceptually appealing because it allows the proatoms to be pre-polarized, or even promoted, to a state that more closely resembles the atom in a molecule. This method is based on first characterizing the convex set of proatom densities associated with the degenerate ground states of isolated atoms and atomic ions. The preferred orientation of the proatoms' densities are then obtained by minimizing the information–theoretic distance between the promolecular and molecular densities. If contributions from excited states (and not just degenerate ground states) are included in the convex set, this method can describe promoted atoms. While the procedure is intractable in general, if one includes only atomic states that have differing electron-numbers and/or spins, the variational principle becomes a simple convex optimization with a single unique solution.

关键词: Hirshfeld partitioningStockholder atoms in moleculesNonspherical proatomsInformation theoryDegenerate ground statesPromoted atomic reference states, Electron densityConceptual density functional theory    
Abstract:

In this study, we show how to generalize Hirshfeld partitioning methods to possibly include non-spherical proatom densities. While this generalization is numerically challenging (requiring global optimization of a large number of parameters), it is conceptually appealing because it allows the proatoms to be pre-polarized, or even promoted, to a state that more closely resembles the atom in a molecule. This method is based on first characterizing the convex set of proatom densities associated with the degenerate ground states of isolated atoms and atomic ions. The preferred orientation of the proatoms' densities are then obtained by minimizing the information–theoretic distance between the promolecular and molecular densities. If contributions from excited states (and not just degenerate ground states) are included in the convex set, this method can describe promoted atoms. While the procedure is intractable in general, if one includes only atomic states that have differing electron-numbers and/or spins, the variational principle becomes a simple convex optimization with a single unique solution.

Key words: Hirshfeld partitioning    Stockholder atoms in molecules    Nonspherical proatoms    Information theory    Degenerate ground states    Promoted atomic reference states, Electron density    Conceptual density functional theory
收稿日期: 2017-08-31 出版日期: 2017-10-10
通讯作者: AYERS Paul W.     E-mail: ayers@mcmaster.ca
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
HEIDAR-ZADEH Farnaz
AYERS Paul W.

引用本文:

HEIDAR-ZADEH Farnaz,AYERS Paul W.. Generalized Hirshfeld Partitioning with Oriented and Promoted Proatoms[J]. 物理化学学报, 2018, 34(5): 514-518, 10.3866/PKU.WHXB201710101

Farnaz HEIDAR-ZADEH,Paul W. AYERS. Generalized Hirshfeld Partitioning with Oriented and Promoted Proatoms. Acta Phys. -Chim. Sin., 2018, 34(5): 514-518, 10.3866/PKU.WHXB201710101.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201710101        http://www.whxb.pku.edu.cn/CN/Y2018/V34/I5/514

1 Parr R. G. ; Yang W. Density-Functional Theory of Atoms and Molecules New York, NY, USA: Oxford UP, 1989.
2 Yang W. ; Cohen A. J. ; Proft F. D. ; Geerlings P. J. Chem. Phys. 2012, 136 (14), 144110.
doi: 10.1063/1.3701562
3 Geerlings P. ; De Proft F. ; Langenaeker W. Chem. Rev. 2003, 103 (5), 1793.
doi: 10.1021/cr990029p
4 Gázquez J. L. J. Mex. Chem. Soc. 2008, 52, 3.
5 Liu S. -B. Acta Phys. -Chim. Sin. 2009, 25 (3), 590.
doi: 10.3866/PKU.WHXB20090332
6 Heidar-Zadeh F. ; Miranda-Quintana R. A. ; Verstraelen T. ; Bultinck P. ; Ayers P. W. J. Chem. Theory Comp. 2016, 12 (12), 5777.
doi: 10.1021/acs.jctc.6b00494
7 Heidar-Zadeh F. ; Richer M. ; Fias S. ; Miranda-Quintana R. A. ; Chan M. ; Franco-Perez M. ; Gonzalez-Espinoza C. E. ; Kim T. D. ; Lanssens C. ; Patel A. H. G. ; et al Chem. Phys. Lett. 2016, 660, 307.
doi: 10.1016/j.cplett.2016.07.039
8 Geerlings P. ; De Proft F. Phys. Chem. Chem. Phys. 2008, 10 (21), 3028.
doi: 10.1039/B717671F
9 Fuentealba P. ; Parr R. G. J. Chem. Phys. 1991, 94 (8), 5559.
doi: 10.1063/1.460491
10 Senet P. J. Chem. Phys. 1996, 105 (15), 6471.
doi: 10.1063/1.472498
11 Franco-Pérez M. ; Ayers P. W. ; Gázquez J. L. ; Vela A. J. Chem. Phys. 2015, 143 (24), 244117.
doi: 10.1063/1.4938422
12 Ayers P. W. ; Anderson J. S. M. ; Bartolotti L. J. Int. J. Quantum Chem. 2005, 101 (5), 520.
doi: 10.1002/qua.20307
13 Echegaray E. ; Cardenas C. ; Rabi S. ; Rabi N. ; Lee S. ; Zadeh F. H. ; Toro-Labbe A. ; Anderson J. S. M. ; Ayers P. W. J. Mol. Model. 2013, 19 (7), 2779.
doi: 10.1007/s00894-012-1637-3
14 Echegaray E. ; Rabi S. ; Cardenas C. ; Zadeh F. H. ; Rabi N. ; Lee S. ; Anderson J. S. M. ; Toro-Labbe A. ; Ayers P. W. J. Mol. Model. 2014, 20, 2162.
doi: 10.1007/s00894-014-2162-3
15 Yang W. ; Mortier W. J. J. Am. Chem. Soc. 1986, 108 (19), 5708.
doi: 10.1021/ja00279a008
16 Ayers P. W. ; Morrison R. C. ; Roy R. K. J. Chem. Phys. 2002, 116 (20), 8731.
doi: 10.1063/1.1467338
17 Bultinck P. ; Fias S. ; Van Alsenoy C. ; Ayers P. W. ; Carbó-Dorca R. J. Chem. Phys. 2007, 127 (3), 034102.
doi: 10.1063/1.2749518
18 Echegaray E. ; Toro-Labbe A. ; Dikmenli K. ; Heidar-Zadeh F. ; Rabi N. ; Rabi S. ; Ayers P. W. ; Cardenas C. ; Parr R. G. ; Anderson J. S. M. In Correlations in Condensed Matter under Extreme Conditions: A Tribute to Renato Pucci on the Occasion of His 70th Birthday; La Magna, A. Ed., Springer International Publishing: Cham, Switzerland 2017, p. 269.
doi: 10.1007/978-3-319-53664-4_19
19 Fuentealba P. ; Pérez P. ; Contreras R. J. Chem. Phys. 2000, 113 (7), 2544.
doi: 10.1063/1.1305879
20 Tiznado W. ; Chamorro E. ; Contreras R. ; Fuentealba P. J. Phys. Chem. A 2005, 109 (14), 3220.
doi: 10.1021/jp0450787
21 Zadeh F. H. ; Fuentealba P. ; Cardenas C. ; Ayers P. W. Phys. Chem. Chem. Phys. 2014, 16 (13), 6019.
doi: 10.1039/c3cp52906a
22 Rong C. ; Lu T. ; Liu S. J. Chem. Phys. 2014, 140 (2), 024109.
doi: 10.1063/1.4860969
23 Morgenstern A. ; Wilson T. R. ; Eberhart M. E. J. Phys. Chem. A 2017, 121 (22), 4341.
doi: 10.1021/acs.jpca.7b00630
24 Sablon N. ; Proft F. D. ; Ayers P. W. ; Geerlings P. J. Chem. Phys. 2007, 126 (22), 224108.
doi: 10.1063/1.2736698
25 Olah J. ; Van Alsenoy C. ; Sannigrahi A. B. J. Phys. Chem. A 2002, 106 (15), 3885.
doi: 10.1021/jp014039h
26 Liu S. J. Chem. Phys. 2014, 141 (19), 194109.
doi: 10.1063/1.4901898
27 Zhou X.-Y. ; Rong C. Y. ; Lu T. ; Liu S. B. Acta Phys. -Chim. Sin. 2014, 30 (11), 2055.
doi: 10.3866/PKU.WHXB201409193
28 Mulliken R. S. J. Chem. Phys. 1955, 23 (10), 1833.
doi: 10.1063/1.1740588
29 Mulliken R. S. J. Chem. Phys. 1955, 23 (10), 1841.
doi: 10.1063/1.1740589
30 Mulliken R. S. J. Chem. Phys. 1955, 23 (12), 2338.
doi: 10.1063/1.1741876
31 Mulliken R. S. J. Chem. Phys. 1955, 23 (12), 2343.
doi: 10.1063/1.1741877
32 L?wdin P. -O. Adv. Quantum Chem. 1970, 5, 185.
doi: 10.1016/S0065-3276(08)60339-1
33 Davidson E. R. J. Chem. Phys. 1967, 46 (9), 3320.
doi: 10.1063/1.1841219
34 Reed A. E. ; Weinstock R. B. ; Weinhold F. J. Chem. Phys. 1985, 83 (2), 735.
doi: 10.1063/1.449486
35 Lu W. C. ; Wang C. Z. ; Schmidt M. W. ; Bytautas L. ; Ho K. M. ; Ruedenberg K. J. Chem. Phys. 2004, 120 (6), 2629.
doi: 10.1063/1.1638731
36 Bader R. F. W. Atoms in Molecules: A Quantum Theory; Clarendon: Oxford, UK 1990.
37 Heidarzadeh F. ; Shahbazian S. Int. J. Quantum Chem. 2010, 111 (12), 2788.
doi: 10.1002/qua.22629
38 Zadeh F. H. ; Shahbazian S. Theor. Chem. Acc. 2010, 128 (2), 175.
doi: 10.1007/s00214-010-0811-x
39 Morgenstern A. ; Morgenstern C. ; Miorelli J. ; Wilson T. ; Eberhart M. E. Phys. Chem. Phys. Chem. 2016, 18 (7), 5638.
doi: 10.1039/c5cp07852k
40 Hirshfeld F. L. Theor. Chim. Act. 1977, 44, 129.
doi: 10.1007/BF00549096
41 Guerra C. F. ; Handgraaf J. W. ; Baerends E. J. ; Bickelhaupt F. M. J. Comput. Chem. 2004, 25 (2), 189.
doi: 10.1002/jcc.10351
42 Nalewajski R. F. ; Parr R. G. Proc. Natl. Acad. Sci. 2000, 97, 8879.
doi: 10.1073/pnas.97.16.8879
43 Nalewajski R. F. ; Parr R. G. J. Phys. Chem. A 2001, 105 (31), 7391.
doi: 10.1021/jp004414q
44 Parr R. G. ; Ayers P. W. ; Nalewajski R. F. J. Phys. Chem. A 2005, 109 (17), 3957.
doi: 10.1021/jp0404596
45 Davidson E. R. ; Chakravorty S. Theor. Chim. Acta 1992, 83 (5-6), 319.
doi: 10.1007/bf01113058
46 Heidar-Zadeh F. ; Ayers P. W. ; Verstraelen T. ; Vinogradov I. ; Vohringer-Martinez E. ; Bultinck P. J. Phys. Chem. A submitted 2017.
47 Heidar-Zadeh F. ; Ayers P. W. ; Bultinck P. J. Chem. Phys. 2014, 141, 094103.
doi: 10.1063/1.4894228
48 Heidar-Zadeh F. ; Ayers P. W. J. Chem. Phys. 2015, 142 (4), 044107.
doi: 10.1063/1.4905123
49 Heidar-Zadeh F. ; Vinogradov I. ; Ayers P. W. Theor. Chem. Acc. 2017, 136 (4), 54.
doi: 10.1007/s00214-017-2077-z
50 Ayers P. W. J. Chem. Phys. 2000, 113 (24), 10886.
doi: 10.1063/1.1327268
51 Ayers P. W. Theor. Chem. Acc. 2006, 115, 370.
doi: 10.1007/s00214-006-0121-5
52 Heidar-Zadeh F. ; Ayers P. W. Theor. Chem. Acc. 2017, 136 (8), 92.
doi: 10.1007/s00214-017-2114-y
53 Verstraelen T. ; Vandenbrande S. ; Heidar-Zadeh F. ; Vanduyfhuys L. ; Van Speybroeck V. ; Waroquier M. ; Ayers P. W. J. Chem. Theory Comp. 2016, 12 (8), 3894.
doi: 10.1021/acs.jctc.6b00456
54 Heidar-Zadeh F. Variational Information-Theoretic Atoms-in-Molecules. Ph. D. Dissertation, McMaster University, Canada, and Ghent University, Belgium 2017.
55 Misquitta A. J. ; Stone A. J. ; Fazeli F. J. Chem. Theory Comp. 2014, 10 (12), 5405.
doi: 10.1021/ct5008444
56 Verstraelen T. ; Ayers P. W. ; Van Speybroeck V. ; Waroquier M. J. Chem. Theory Comp. 2013, 9 (5), 2221.
doi: 10.1021/ct4000923
57 Bultinck P. ; Van Alsenoy C. ; Ayers P. W. ; Carbo-Dorca R. J. Chem. Phys. 2007, 126 (14), 144111.
doi: 10.1063/1.2715563
58 Bultinck P. ; Ayers P. W. ; Fias S. ; Tiels K. ; Van Alsenoy C. Chem. Phys. Lett. 2007, 444 (1?3), 205.
doi: 10.1016/j.cplett.2007.07.014
59 Ghillemijn D. ; Bultinck P. ; Van Neck D. ; Ayers P. W. J. Comput. Chem. 2011, 32, 1561.
doi: 10.1002/jcc.21734
60 Manz T. A. ; Sholl D. S. J. Chem. Theory Comp. 2010, 6 (8), 2455.
doi: 10.1021/ct100125x
61 Manz T. A. ; Sholl D. S. J. Chem. Theory Comp. 2012, 8 (8), 2844.
doi: 10.1021/ct3002199
62 Lee L. P. ; Limas N. G. ; Cole D. J. ; Payne M. C. ; Skylaris C. K. ; Manz T. A. J. Chem. Theory Comp. 2014, 10 (12), 5377.
doi: 10.1021/ct500766v
63 Limas N. G. ; Manz T. A. RSC Adv. 2016, 6 (51), 45727.
doi: 10.1039/c6ra05507a
64 Manz T. A. ; Limas N. G. RSC Adv. 2016, 6 (53), 47771.
doi: 10.1039/c6ra04656h
65 Lillestolen T. C. ; Wheatley R. J. Chem. Commun. 2008, 45, 5909.
doi: 10.1039/b812691g
66 Lillestolen T. C. ; Wheatley R. J. J. Chem. Phys. 2009, 131, 144101.
doi: 10.1063/1.3243863
67 Verstraelen T. ; Ayers P. W. ; Van Speybroeck V. ; Waroquier M. Chem. Phys. Lett. 2012, 545, 138.
doi: 10.1016/j.cplett.2012.07.028
68 Levy M. Phys. Rev. A 1982, 26 (3), 1200.
doi: 10.1103/PhysRevA.26.1200
69 Lieb E. H. Int. J. Quantum Chem. 1983, 24 (3), 243.
doi: 10.1002/qua.560240302
70 Ayers P. W. Phys. Rev. A 2006, 73, 012513.
doi: 10.1103/PhysRevA.73.012513
71 Cardenas C. ; Ayers P. W. ; Cedillo A. J. Chem. Phys. 2011, 134, 174103.
doi: 10.1063/1.3585610
[1] GONZÁLEZ Marco Martínez,CÁRDENAS Carlos,RODRÍGUEZ Juan I.,LIU Shubin,HEIDAR-ZADEH Farnaz,MIRANDA-QUINTANA Ramón Alain,AYERS Paul W.. Quantitative Electrophilicity Measures[J]. 物理化学学报, 2018, 34(6): 662-674.
[2] ALIPOUR Mojtaba. Which Information Theoretic Quantity Should We Choose for Steric Analysis of Water Nanoclusters (H2O)n (n = 6, 32, 64)?[J]. 物理化学学报, 2018, 34(4): 407-413.
[3] NALEWAJSKI Roman F. Chemical Reactivity Description in Density-Functional and Information Theories[J]. 物理化学学报, 2017, 33(12): 2491-2509.