Please wait a minute...
物理化学学报  2018, Vol. 34 Issue (5): 519-527    DOI: 10.3866/PKU.WHXB201710126
所属专题: 密度泛函理论中的化学概念特刊
论文     
Fukui函数和局域软度应用于亲电加成反应的区位选择性的研究
朱尊伟1,杨巧凤1,徐珍珍1,2,*(),赵东霞1,*(),樊红军2,杨忠志1
1 辽宁师范大学化学化工学院,辽宁大连116029
2 中国科学院大连化学物理研究所,辽宁大连116029
Fukui Function and Local Softness Related to the Regioselectivity of Electrophilic Addition Reactions
Zunwei ZHU1,Qiaofeng YANG1,Zhenzhen XU1,2,*(),Dongxia ZHAO1,*(),Hongjun FAN2,Zhongzhi YANG1
1 School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, Liaoning Province, P. R. China
2 Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning Province, P. R. China
 全文: PDF(642 KB)   HTML 输出: BibTeX | EndNote (RIS) |
摘要:

Fukui函数、局域软度、广义Fukui函数以及广义软度通常被称为反应描述符。使用它们研究和探讨了HCl与不对称烯烃以及溴苯硒与不对称苯乙烯的亲电加成反应的区位选择性。在MP2/6-311++G(d, p)理论水平下,采用有限差分方法计算这些反应描述符,同时也使用ABEEMσπ方法进行了计算。ABEEMσπ模型下的局域软度和广义局域软度,分别结合局域硬-软酸碱(HSAB)原理,得出亲电试剂氯化氢与溴苯硒,更容易进攻不对称乙烯和苯乙烯中的马氏碳原子,符合马氏规则。而有限差分方法不能完全地解释该系列反应的区位选择性。此外,主要产物所对应的马氏碳原子的广义局域软度值,就能够预测出此类反应的活性序列,所得结果与速率常数有很好的关联。

关键词: Fukui函数局域软度局域硬-软酸碱原理亲点加成反应有限差分近似;ABEEMσπ模型    
Abstract:

Regioselectivities of electrophilic addition reactions of hydrogen chloride to asymmetric alkenes and benzeneselenenyl bromide to substituted styrenes have been investigated by using reactivity descriptors, including Fukui function f(r), local softness s(r), generalized Fukui function fG(r), and generalized local softness sG(r). All of them are obtained from the finite difference approximation method calculated by ab initio method at MP2/6-311++G(d, p) level of theory and our ABEEMσπ model, respectively. According to the generalized version of the local hard-soft and acid-base (HSAB) principle, the forecasted regioselectivities of our investigated additions using the ABEEMσπ model are in fair agreement with the experimental values. In particular, we can also rationalize their reaction rate constants by the generalized local softness, i.e., the softest the site is, the easiest the reaction is. Hence, the generalized reactivity descriptors work quite well.

Key words: Fukui function    Local softness    Local hard-soft and acids-bases (HSAB) principle    Electrophilic addition reactions    Finite difference approximation    ABEEMσπ model
收稿日期: 2017-08-30 出版日期: 2017-10-12
中图分类号:  O641  
基金资助: 国家自然科学基金(21483083);国家自然科学基金(21483083, 21133005);辽宁省自然科学基金(2014020150)
通讯作者: 徐珍珍,赵东霞     E-mail: jane_xu@dicp.ac.cn;zhaodxchem@lnnu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
朱尊伟
杨巧凤
徐珍珍
赵东霞
樊红军
杨忠志

引用本文:

朱尊伟,杨巧凤,徐珍珍,赵东霞,樊红军,杨忠志. Fukui函数和局域软度应用于亲电加成反应的区位选择性的研究[J]. 物理化学学报, 2018, 34(5): 519-527, 10.3866/PKU.WHXB201710126

Zunwei ZHU,Qiaofeng YANG,Zhenzhen XU,Dongxia ZHAO,Hongjun FAN,Zhongzhi YANG. Fukui Function and Local Softness Related to the Regioselectivity of Electrophilic Addition Reactions. Acta Phys. -Chim. Sin., 2018, 34(5): 519-527, 10.3866/PKU.WHXB201710126.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201710126        http://www.whxb.pku.edu.cn/CN/Y2018/V34/I5/519

Fig 1  The regioselectivities of electrophilic additions of hydrogen chloride to the substituted ethenes (R3 = H) and benzeneselenenyl bromide to substituted styrenes (R1 = R2 = H), including Markovnikov and anti-Markovnikov products.
Type of ABEEMσπ parameter χ* 2η*
Cl17―Ph―C626=C62 C66 in ―Ph 2.500 6.800
π66 3.850 94.150
C626 2.500 7.200
π626 3.790 94.150
Cl17 3.010 20.099
C62=C64―R C62 2.500 10.200
π62 3.500 80.319
C64 2.600 6.200
π64 3.580 88.150
Se― 1.800 34.970
Br― 2.880 70.019
σC-Se 4.900 35.000
σSe-Br 6.950 75.000
lpCl- 5.536 46.900
lpBr- 5.965 70.000
lpBe- 3.700 7.164
Table 1  Parameters χ* and 2η* in ABEEMσπ Model.
Finite difference approximation ABEEMσπ model
sMA sAM sAMG sMAG 103sMA 103sAMG 10∆sMAG 10∆sMAG
ethene 0.589 0.589 2.647 2.647 0.069 0.069 0.526 0.526
propene 0.533 0.581 6.017 5.579 2.099 9.250 0.739 1.760
1-butene 0.549 0.556 8.863 8.779 2.867 5.727 0.981 2.012
2-methylpropene 0.604 0.627 8.195 7.924 3.008 6.643 0.964 2.122
Table 2  The difference values, ∆sMA, ∆sAM, ∆sMAG and ∆sAMG, for HCl with alkene in terms of MP2/6-311++G(d, p) level under the finite difference approximation, and our ABEEMσπ model.
Finite difference approximation ABEEMσπ model
f+ fG+ s+ sG+ f fG s sG
HCl H 0.7503 1.5007 1.5446 3.0893 0.2855 0.5709 0.0133 0.0265
f- fG- s- sG- f fG s sG
ethene CMA 0.4242 2.5451 0.9560 5.736 0.1196 0.7176 0.0132 0.0791
CAM 0.4242 2.5451 0.9560 5.736 0.1196 0.7176 0.0132 0.0791
propene CMA 0.4043 3.6388 1.0118 9.106 0.0796 0.7168 0.0112 0.1004
CAM 0.3849 3.4639 0.9632 8.668 0.1607 1.4464 0.0225 0.2025
1-butene CMA 0.3952 4.7424 0.9960 11.952 0.0623 0.7481 0.0104 0.1246
CAM 0.3924 4.7090 0.9890 11.868 0.1139 1.3672 0.0190 0.2277
2-methylpropene CMA 0.3842 4.6099 0.9404 11.285 0.0632 0.7580 0.0102 0.1229
CAM 0.3749 4.4989 0.9178 11.013 0.1227 1.4724 0.0199 0.2387
Table 3  The values of condensed f(r), fG(r), s(r), and sG(r) for the H atom of electrophile HCl and the CMA and CAM of unsymmetrical alkenes at the level of MP2/6-311++G(d, p) and the ABEEMσπ model.
X―PhCH=CH2 HF/STO-3G ABEEMσπ
qMA qAM qMA qAM
H -0.128 -0.057 -0.125 -0.054
3-Cl -0.122 -0.057 -0.116 -0.042
4-Cl -0.122 -0.058 -0.116 -0.042
4-CH3 -0.129 -0.057 -0.123 -0.051
Table 4  The charges of CMA, CAM obtained from HF/STO-3G and ABEEMσπ Model.
X―PhCH=CH2 finite difference approach ABEEMσπ Model aMA: AM
sMA sAM sMAG sAMG 104sMA 104sAM 102sMAG 102sAMG
H 0.841 1.457 8.915 18.780 1.666 1.680 4.683 4.711 78:22
3-Cl 0.854 1.413 9.133 18.066 1.636 1.649 4.600 4.629 59:41
4-Cl 0.857 1.442 9.183 18.534 1.644 1.658 4.625 4.652 76:24
4-CH3 0.853 1.517 7.128 19.754 1.579 1.593 6.689 6.721 86:14
Table 5  The values of ∆sMA, ∆sAM, ∆sMAG and ∆sAMG for PhSeBr with substituted styrene (X-PhCH=CH2) at the level of MP2/6-311++G(d, p) with the finite difference approach and ABEEMσπ model.
Fig 2  The line charts of the reaction rates (upper), the sG (middle) and sG- (lower) of CMA atoms in the four additions of benzeneselenyl bromide to the substituted styrenes.
12 Chandra A. K. ; Nguyen M. T. J. Phys. Chem. A 1998, 102, 6181.
doi: 10.1021/jp980949w
13 Damoun S. ; Woude V. D. ; Mendez F. ; Geerlings P. J. Phys. Chem. A 1997, 101, 886.
doi: 10.1021/jp9611840
14 Geerlings P. ; De Proft F. Int. J. Quantum Chem. 2000, 80, 227.
doi: 10.1002/1097-461X(2000)80:2<227::AID-QUA17>3.0.CO;2-N
15 Nguyen L. T. ; De Proft F. ; Dao V. L. ; Nguyen M. T. ; Geerlings P. J. Phys. Orgs. Chem. 2003, 16, 615.
doi: 10.1002/poc.653
16 Nguyen L. T. ; Le T. N. ; Proft F. D. ; Chandra A. K. ; Langenaeker W. ; Nguyen M. T. ; Geerlings P. J. Am. Chem. Soc. 1999, 121, 5992.
doi: 10.1021/ja983394r
17 Sengupta D. ; Chandra A. K. ; Nguren M. T. J. Org. Chem. 1997, 62, 6404.
doi: 10.1021/jo970353p
18 Li Y. ; Evans J. N. S. J. Am. Chem. Soc. 1995, 117, 7756.
doi: 10.1021/ja00134a021
19 Gazquez J. L. ; Mendez F. J. Phys. Chem. 1994, 98, 4591.
doi: 10.1021/j100068a018
20 Geerlings P. ; Proft F. D. ; Langenaeker W. Adv. Quantum Chem. 1998, 33, 303.
doi: 10.1016/S0065-3276(08)60442-6
21 Xu Z. -Z. ; Zhao D. -X. ; Yang Z. -Z. Chin. Sci. Bull. 2012, 57, 2787.
doi: 10.1360/972012-537
22 Zhao D. -X. ; Xu Z. -Z. ; Yang Z. -Z. Int. J. Quantum Chem. 2013, 113, 1116.
doi: 10.1002/qua.24173
23 Geerlings P. ; Proft F. D. ; Langenaeker W. Chem. Rev. 2003, 103, 1793.
doi: 10.1021/cr990029p
24 Parr R. G. ; Yang W. Density Functional Theory of Atom and Molecules New York: Oxford University Press, 1989.
1 Yang Z. -Z. ; Ding Y. -L. ; Zhao D. -X. ChemPhysChem 2008, 9, 2379.
doi: 10.1002/cphc.200800364
2 Suresh C. H. ; Koga N. ; Gadre S. R. J. Org. Chem. 2001, 66, 6883.
doi: 10.1021/jo010063f
25 Parr R. G. ; Yang W. T. J. Am. Chem. Soc. 1984, 106, 4049.
doi: 10.1021/ja00326a036
26 Yang Y. ; Parr R. G. Proc. Natl. Acad. Sci. USA 1985, 82, 6723.
doi: 10.1073/pnas.82.20.6723
27 Padmanabhan J. ; Parthasarathi R. ; Elango M. ; Subramanian V. ; Krishnamoorthy B. S. ; Gutierrez-Oliva S. ; Toro-Labb A. ; Roy D. R. ; Chattaraj P. K. J. Phys. Chem. A 2007, 111, 9130.
doi: 10.1021/jp0718909
28 Baekelandt B. G. ; Janssens G. O. A. ; Toufar H. ; Mortier W. J. ; Schoongeydt R. A. J. Phys. Chem. 1995, 99, 9784.
doi: 10.1021/j100024a020
29 Baekelandt B. G. ; Mortier W. J. ; Lievens J. L. ; Schoonheydt R. A. J. Am. Chem. Soc. 1991, 113, 6730.
doi: 10.1021/ja00018a003
30 Baekelandt B. G. ; Mortier W. J. ; Schoonheydt R. A. The EEM Approach to Chemical Hardness in Molecules and Solids: Fundamentals and Applications, Structruce and Bonding; Springer: Berlin Heidelberg, Germany 1993, pp. 187- 227.
31 Bultinck P. ; Langenaeker W. ; Lahorte P. ; De Proft F. ; Geerlings P. ; Waroquier M. ; Tollenaere J. P. J. Phys. Chem. A 2002, 106, 7887.
doi: 10.1021/jp0205463
32 Bultinck P. ; Langenaeker W. ; Lahorte P. ; Proft F. D. ; Geerlings P. ; Alsenoy C. V. ; Tollenaere J. P. J. Phys. Chem. A 2002, 106, 7895.
doi: 10.1021/jp020547v
33 Janssens G. O. A. ; Toufar H. ; Baekelandt B. G. ; Mortier W. J. ; Schoonheydt R. A. Stud. Surf. Sci. Cat. 1997, 105, 725.
doi: 10.1016/S0167-2991(97)80622-2
34 Mortier W. J. ; Ghosh S. K. ; Shankar S. J. Am. Chem. Soc. 1986, 108, 4315.
doi: 10.1021/ja00275a013
35 Cong Y. ; Yang Z. Z. Chem. Phys. Lett. 2000, 316, 324.
doi: 10.1016/S0009-2614(99)01289-0
36 Yang Z. -Z. ; Wang J. -J. ; Zhao D. -X. J. Comput. Chem. 2014, 35, 1690.
doi: 10.1002/jcc.23676
37 Zhao D. X. ; Liu C. ; Wang F. F. ; Yu C. Y. ; Gong L. D. ; Liu S. B. ; Yang Z. Z. J. Chem. Theory Comput. 2010, 6, 795.
doi: 10.1021/ct9006647
38 Liu C. ; Li Y. ; Han B. -Y. ; Gong L. -D. ; Lu L. -N. ; Yang Z. -Z. ; Zhao D. -X. J. Chem. Theory Comput. 2017, 13, 2098.
doi: 10.1021/acs.jctc.6b01206
39 Liu L. -L. ; Yang Z.-Z. ; Zhao D. -X. ; Gong L. -D. ; Liu C. RSC Adv. 2014, 4, 52083.
doi: 10.1039/c4ra09631b
40 Wu Y. ; Yang Z. Z. J. Phys. Chem. 2004, 108, 7563.
doi: 10.1021/jp0493881
41 Yang Z. Z. ; Cui B. Q. J. Chem. Theory Comput. 2007, 3, 1561.
doi: 10.1021/ct600379n
42 Yang Z. Z. ; Qian P. J. Chem. Phys. 2006, 125, 064311.
doi: 10.1063/1.2210940
43 Yang Z. Z. ; Wu Y. ; Zhao D. X. J. Chem. Phys. 2004, 120, 2541.
doi: 10.1063/1.1640345
44 Yang Z. Z. ; Zhang Q. J. Comput. Chem. 2006, 27, 1.
doi: 10.1002/jcc.20317
45 Zhang Q. ; Yang Z. Z. Chem. Phys. Lett. 2005, 403, 242.
doi: 10.1016/j.cplett.2005.01.011
46 Wang C. S. ; Yang Z. Z. J. Chem. Phys. 1999, 110, 6189.
doi: 10.1063/1.478524
47 Yang Z. Z. ; Wang C. S. J. Phys. Chem. A 1997, 101, 6315.
doi: 10.1021/jp9711048
48 Frisch M. J. ; Trucks G. W. ; Schlegel H. B. ; Scuseria G. E. ; Robb M. A. ; Cheeseman J. R. ; Montgomery Jr. J. A. ; Vreven T. ; Kudin K. N. ; Burant J. C. ; et al Gaussian 03, Revision C.02; Gaussian, Inc.: Wallingford, CT, USA 2004.
49 Derouane E. G. ; Fripiat J. G. ; Ballmoos R. V. J. Phys. Chem. 1990, 94, 1687.
doi: 10.1021/j100367a085
50 Wilson M. S. ; Ichikawa S. J. Phys. Chem. 1989, 93, 3087.
doi: 10.1021/j100345a041
51 Torrent-Sucarrat M. ; Proft F. D. ; Geerlings P. ; Ayers P. W. Chem. Eur. J. 2008, 14, 8652.
doi: 10.1002/chem.200800570
52 Huzinaka S. ; Sakai Y. ; Miyoshi E. ; Narita S. J. Chem. Phys. 1990, 93, 3319.
doi: 10.1063/1.458812
53 Jakalian A. ; Bush B. ; Jack D. B. ; Bayly C. I. J. Comput. Chem. 2000, 21, 132.
doi: 10.1002/(SICI)1096-987X(20000130)21:2<132::AID-JCC5>3.0.CO;2-P
3 Aizman A. ; Contreras R. ; Galvan M. ; Cedillo A. ; Santos J. C. ; Chamorro E. J. Phys. Chem. A 2002, 106, 7844.
doi: 10.1021/jp020214y
4 Menendez M. I. ; Suarez D. ; Sorod J. A. ; Sordo T. L. J. Comput. Chem. 1995, 16, 659.
doi: 10.1002/jcc.540160602
5 Benson S. W. ; Bose A. N. J. Chem. Phys. 1963, 39, 3463.
doi: 10.1063/1.1734215
6 Bose A. N. ; Benson S. W. J. Chem. Phys. 1963, 38, 878.
doi: 10.1063/1.1733776
7 Luh T. -Y. ; So W. -H. ; Cheung K. S. ; Tam S. W. J. Org. Chem. 1985, 50, 3051.
doi: 10.1021/jo00217a006
8 Rauk A. Orbital Interaction Theory of Organic Chemistry, 2nd ed., John Wiley & Sons, Inc.: New York, USA 2001.
9 Sathre J. L. ; Thomas T. D. ; Svensson S. J. J. Chem. Soc., Perkin Trans 2 1997, 28, 749.
doi: 10.1002/chin.199730041
10 Markovnikov V. Ann. Chem. Pharm. 1870, 153, 228.
doi: 10.1002/jlac.18701530204
11 Chandra A. K. ; Nguren M. T. J. Comput. Chem. 1998, 19, 195.
doi: 10.1002/(SICI)1096-987X(19980130)19:2<195::AID-JCC12>3.0.CO;2-H
[1] 张贻亮, 李慎敏, 杨忠志. β-丙内酯的反应性分析[J]. 物理化学学报, 1999, 15(11): 986-989.