Please wait a minute...
物理化学学报  2018, Vol. 34 Issue (5): 537-542    DOI: 10.3866/PKU.WHXB201710161
所属专题: 密度泛函理论中的化学概念特刊
论文     
Adsorption of Hydrazoic Acid on Pristine Graphyne Sheet: A Computational Study
DEB Jyotirmoy,PAUL Debolina,PEGU David,SARKAR Utpal*()
Adsorption of Hydrazoic Acid on Pristine Graphyne Sheet: A Computational Study
Jyotirmoy DEB,Debolina PAUL,David PEGU,Utpal SARKAR*()
 全文: PDF(951 KB)   HTML 输出: BibTeX | EndNote (RIS) |
摘要:

Herein we have investigated the interaction between hydrazoic acid (HN3) and a pristine graphyne system based on density functional theory (DFT) method using generalized gradient approximation. The van der Waals dispersion correction is also considered for predicting the possibility of using the graphyne system for detection of hydrazoic acid. Pristine graphyne has a band gap of 0.453 eV, which decreases to 0.424 eV when HN3 is adsorbed on graphyne. The electrical conductivity of HN3-adsorbed graphyne is greater than that of its pristine counterpart. Charge transfer analysis reveals that the HN3-adsorbed graphyne system behaves as an n-type semiconductor; however, its pristine analogue acts as an intrinsic semiconductor. Pristine graphyne has zero dipole moment; however, its interaction with HN3 increases its dipole moment. The electronic properties of graphyne is significantly influenced by the presence of HN3, leading to the possibility of designing graphyne-based sensors for HN3 detection.

关键词: GraphyneHN3 moleculeDFTElectronic propertyAdsorptionGas sensor    
Abstract:

Herein we have investigated the interaction between hydrazoic acid (HN3) and a pristine graphyne system based on density functional theory (DFT) method using generalized gradient approximation. The van der Waals dispersion correction is also considered for predicting the possibility of using the graphyne system for detection of hydrazoic acid. Pristine graphyne has a band gap of 0.453 eV, which decreases to 0.424 eV when HN3 is adsorbed on graphyne. The electrical conductivity of HN3-adsorbed graphyne is greater than that of its pristine counterpart. Charge transfer analysis reveals that the HN3-adsorbed graphyne system behaves as an n-type semiconductor; however, its pristine analogue acts as an intrinsic semiconductor. Pristine graphyne has zero dipole moment; however, its interaction with HN3 increases its dipole moment. The electronic properties of graphyne is significantly influenced by the presence of HN3, leading to the possibility of designing graphyne-based sensors for HN3 detection.

Key words: Graphyne    HN3 molecule    DFT    Electronic property    Adsorption    Gas sensor
收稿日期: 2017-08-02 出版日期: 2017-10-16
基金资助: JD is thankful to Department of Science and Technology, New Delhi, India for the INSPIRE Fellowship Award (Grant No. DST/INSPIRE Fellowship/2015/IF150892)
通讯作者: SARKAR Utpal     E-mail: utpalchemiitkgp@yahoo.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
DEB Jyotirmoy
PAUL Debolina
PEGU David
SARKAR Utpal

引用本文:

DEB Jyotirmoy,PAUL Debolina,PEGU David,SARKAR Utpal. Adsorption of Hydrazoic Acid on Pristine Graphyne Sheet: A Computational Study[J]. 物理化学学报, 2018, 34(5): 537-542, 10.3866/PKU.WHXB201710161

Jyotirmoy DEB,Debolina PAUL,David PEGU,Utpal SARKAR. Adsorption of Hydrazoic Acid on Pristine Graphyne Sheet: A Computational Study. Acta Phys. -Chim. Sin., 2018, 34(5): 537-542, 10.3866/PKU.WHXB201710161.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201710161        http://www.whxb.pku.edu.cn/CN/Y2018/V34/I5/537

Fig 1  Optimized geometry of (a) pristine graphyne; (b) HN3 molecule adsorbed graphyne system (top view); (c) HN3 molecule adsorbed graphyne system (side view)
System D Eads/eV Eg/eV Q/e μ/Debye
without vdW with vdW without vdW with vdW without vdW with vdW without vdW with vdW without vdW with vdW
HN3 adsorbed graphyne 2.884 2.884 −0.550 −0.725 0.424 0.424 0.078 0.021 0.173 0.173
Table 1  The optimal distance (D), adsorption energy (Eads), energy gap (Eg), Mulliken charge transfer (Q) and electric dipole moment (μ) of the adsorption of hydrazoic acid on pristine graphyne.
Fig 2  Band structure of HN3 molecule adsorbed graphyne system (a) without vdW correction; (b) with vdW correction.
Fig 3  Total density of states (DOS) and projected density of states (PDOS) of HN3 molecule adsorbed graphyne system, (a) without vdW correction; (b) with vdW correction.
Fig 4  PDOS of pristine graphyne and HN3 adsorbed graphyne.
1 Kroto H. W. ; Heath J. R. ; O'Brien S. C. ; Curl R. F. ; Smalley R. E. Nature 1985, 318, 162.
doi: 10.1038/318162a0
2 Iijima S. Nature 1991, 354, 56.
doi: 10.1038/354056a0
3 Novoselov K. S. ; Geim A. K. ; Morozov S. V. ; Jiang D. ; Zhang Y. ; Dubonos S. V. ; Grigorieva I. V. ; Firsov A. A. Science 2004, 306, 666.
doi: 10.1126/science.1102896
4 Georgakilas V. ; Perman J. A. ; Tucek J. ; Zboril R. Chem. Rev. 2015, 115, 4744.
doi: 10.1021/cr500304f
5 Lu H. ; Li S. -D. J. Mater. Chem. C 2013, 1, 3677.
doi: 10.1039/C3TC30302K
6 Yang M. -Q. ; Zhang N. ; Xu Y. -J. ACS Appl. Mater. Interfaces 2013, 5, 1156.
doi: 10.1021/am3029798
7 Deng W. -Q. ; Matsuda Y. ; Goddard W. A. J. Am. Chem. Soc. 2007, 129, 9834.
doi: 10.1021/ja061443r
8 Romo-Herrera J. M. ; Terrones M. ; Terrones H. ; Meunier V. ACS Nano 2008, 2, 2585.
doi: 10.1021/nn800612d
9 Baughman R. H. ; Eckhardt H. ; Kertesz M. J. Chem. Phys. 1987, 87, 6687.
doi: 10.1063/1.453405
10 Narita N. ; Nagai S. ; Suzuki S. ; Nakao K. Phys. Rev. B 1998, 58, 11009.
doi: 10.1103/PhysRevB.58.11009
11 Malko D. ; Neiss C. ; Viñes F. ; Görling A. Phys. Rev. Lett. 2012, 108, 086804.
doi: 10.1103/PhysRevLett.108.086804
12 Kondo M. ; Nozaki D. ; Tachibana M. ; Yumura T. ; Yoshizawa K. Chem. Phys. 2005, 312, 289.
doi: 10.1016/j.chemphys.2004.11.029
13 Singh N. B. ; Bhattacharya B. ; Sarkar U. Struct. Chem. 2014, 25, 1695.
doi: 10.1007/s11224-014-0440-4
14 Koo J. ; Huang B. ; Lee H. ; Kim G. ; Nam J. ; Kwon Y. ; Lee H. J. Phys. Chem. C 2014, 118, 2463.
doi: 10.1021/jp4087464
15 Shayeganfar F. J. Phys. Chem. C 2015, 119, 12681.
doi: 10.1021/acs.jpcc.5b01560
16 Deb J. ; Bhattacharya B. ; Sarkar U. J. Phys.: Conf. Ser. 2016, 759, 012038.
doi: 10.1088/1742-6596/759/1/012038
17 Bhattacharya B. ; Sarkar U. J. Phys. Chem. C 2016, 120, 26793.
doi: 10.1021/acs.jpcc.6b07478
18 Kang J. ; Li J. ; Wu F. ; Li S.-S. ; Xia J. -B. J. Phys. Chem. C 2011, 115, 20466.
doi: 10.1021/jp206751m
19 Bhattacharya B. ; Singh N. B. ; Sarkar U. Int. J. Quantum Chem 2015, 115, 820.
doi: 10.1002/qua.24910
20 Pan J. ; Du S. ; Zhang Y. ; Pan L. ; Zhang Y. ; Gao H. ; Pantelides S. T. Phys. Rev. B 2015, 92, 205429.
doi: 10.1103/PhysRevB.92.205429
21 Li C. ; Li J. ; Wu F. ; Li S.-S. ; Xia J.-B. ; Wang L. -W. J. Phys. Chem. C 2011, 115, 23221.
doi: 10.1021/jp208423y
22 Guo Y. ; Jiang K. ; Xu B. ; Xia Y. ; Yin J. ; Liu Z. J. Phys. Chem. C 2012, 116, 13837.
doi: 10.1021/jp302062c
23 Hwang H. J. ; Koo J. ; Park M. ; Park N. ; Kwon Y. ; Lee H. J. Phys. Chem. C 2013, 117, 691.
doi: 10.1021/jp3105198
24 Deb J. ; Paul D. ; Sarkar U. AIP Conf. Proc. 2017, 1832, 050106.
doi: 10.1063/1.4980339
25 Baheshtian J. ; Peyghan A. A. ; Bagheri Z. ; Tabar M. B. Struct. Chem. 2014, 25, 1.
doi: 10.1007/s11224-013-0230-4
26 Deb J. ; Bhattacharya B. ; Sarkar U. AIP Conf. Proc. 2016, 1731, 050081.
doi: 10.1063/1.4947735
27 Omidvar A. ; Mohajeri A. Mol. Phys. 2015, 113, 3900.
doi: 10.1080/00268976.2015.1080388
28 Deb J. ; Bhattacharya B. ; Paul D. ; Sarkar U. Phys. E 2016, 84, 330.
doi: 10.1016/j.physe.2016.08.006
29 Srinivasu K. ; Ghosh S. K. J. Phys. Chem. C 2012, 116, 5951.
doi: 10.1021/jp212181h
30 Bhattacharya B. ; Sarkar U. ; Seriani N. J. Phys. Chem. C 2016, 120, 26579.
doi: 10.1021/acs.jpcc.6b07092
31 Chattaraj P. K. ; Sarkar U. Int. J. Quantum Chem. 2003, 91, 633.
doi: 10.1002/qua.10486
32 Chattaraj P. K. ; Sarkar U. ; Parthasarathi R. ; Subramanian V. Int. J. Quantum Chem. 2005, 101, 690.
doi: 10.1002/qua.20334
33 Chattaraj P. K. ; Sarkar U. Comp. Theor. Chem 2007, 19, 269.
doi: 10.1016/S1380-7323(07)80014-8
34 Sarkar U. ; Khatua M. ; Chattaraj P. K. Phys. Chem. Chem. Phys. 2012, 14, 1716.
doi: 10.1039/c1cp22862e
35 Sarkar U. ; Giri S. ; Chattaraj P. K. J. Phys. Chem. A 2009, 113, 10759.
doi: 10.1021/jp902374d
36 Khatua M. ; Sarkar U. ; Chattaraj P. K. Eur. Phys. J. D 2014, 68, 1.
doi: 10.1140/epjd/e2013-40472-y
37 Chattaraj P. K. ; Khatua M. ; Sarkar U. Int. J. Quantum Chem. 2015, 115, 144.
doi: 10.1002/qua.24801
38 Deb J. ; Bhattacharya B. ; Singh N. B. ; Sarkar U. Struct. Chem. 2016, 27, 1221.
doi: 10.1007/s11224-016-0747-4
39 Peyghan A. A. ; Rastegar S. F. ; Hadipour N. L. Phys. Lett. A 2014, 378, 2184.
doi: 10.1016/j.physleta.2014.05.016
40 Majidi R. ; Karami A. R. Phys. E 2014, 59, 169.
doi: 10.1016/j.physe.2014.01.019
41 Shekar S. C. ; Swathi R. S. J. Phys. Chem. C 2014, 118, 4516.
doi: 10.1021/jp412791v
42 Ordejón P. ; Artacho E. ; Soler J. M. Phys. Rev. B 1996, 53, R10441.
doi: 10.1103/PhysRevB.53.R10441
43 Soler J. M. ; Artacho E. ; Gale J. D. ; García A. ; Junquera J. ; Ordejón P. ; Portal D. S. J. Phys. Condens. Matter 2002, 14, 2745.
doi: 10.1088/0953-8984/14/11/302
44 Perdew J.P. ; Burke K. ; Ernzerhof M. Phys. Rev. Lett. 1996, 77, 3865.
doi: 10.1103/PhysRevLett.77.3865
45 Troullier N. ; Martins J. Solid State Commun 1990, 74, 613.
doi: 10.1016/0038-1098(90)90686-6
46 Grimme S. J. Comput. Chem. 2006, 27, 1787.
doi: 10.1002/jcc.20495
47 Parr R. G. ; Chattaraj P. K. J. Am. Chem. Soc. 1991, 113, 1854.
doi: 10.1021/ja00005a072
48 Ghara M. ; Pan S. ; Deb J. ; Kumar A. ; Sarkar U. ; Chattaraj P. K. J. Chem. Sci. 2016, 10, 15378.
doi: 10.1007/s12039-016-1150-9
[1] GEERLINGS Paul,DE PROFT Frank,FIAS Stijn. Analogies between Density Functional Theory Response Kernels and Derivatives of Thermodynamic State Functions[J]. 物理化学学报, 2018, 34(6): 699-707.
[2] CONTRERAS-GARCíA Julia,YANG Weitao. Perspective: Chemical Information Encoded in Electron Density[J]. 物理化学学报, 2018, 34(6): 567-580.
[3] OROZCO-VALENCIA Ulises,GÁZQUEZ José L.,VELA Alberto. Reactivity of Indoles through the Eyes of a Charge-Transfer Partitioning Analysis[J]. 物理化学学报, 2018, 34(6): 692-698.
[4] 殷迪,邱宗仰,李湃,李震宇. 采用优化的DFTB参数对铜(111)表面碳二聚化的分子动力学研究[J]. 物理化学学报, 2018, 34(10): 1116-1123.
[5] 郭云鹏,冯杰,李文英. Ni掺杂对Ni/MgO体系中电荷分配影响[J]. 物理化学学报, 2017, 33(9): 1796-1802.
[6] 吴海飞,陈耀,徐珊瑚,鄢永红,斯剑霄,谭永胜. PbTe (111)薄膜的分子束外延生长及其表面结构特性[J]. 物理化学学报, 2017, 33(2): 419-425.
[7] 陈华彬,章小慧,龚丽珍,何婧,许旋,徐志广,刘海洋. β位取代基对咔咯锰(Ⅴ)氧配合物电子吸收光谱的影响[J]. 物理化学学报, 2016, 32(8): 1983-1989.
[8] 胡慧萍,王梦,丁治英,姬广富. FT-IR、XPS和DFT研究水杨酸钠在针铁矿或赤铁矿上的吸附机理[J]. 物理化学学报, 2016, 32(8): 2059-2068.
[9] 马红星,葛婷婕,蔡倩倩,徐颖华,马淳安. 水溶液中银阴极对3,4,5,6-四氯吡啶甲酸脱氯反应的催化作用[J]. 物理化学学报, 2016, 32(7): 1715-1721.
[10] FARMANZADEH Davood,REZAINEJAD Hamid. DFT Study of Adsorption of Diazinon, Hinosan, Chlorpyrifos and Parathion Pesticides on the Surface of B36N36 Nanocage and Its Fe Doped Derivatives as New Adsorbents[J]. 物理化学学报, 2016, 32(5): 1191-1198.
[11] 何禹,王一波. 分子间相互作用研究的APF-D密度泛函SAM色散校正方法改进[J]. 物理化学学报, 2016, 32(11): 2709-2716.
[12] 谢湖均, 牟望舒, 林芙蓉, 徐结慧, 雷群芳, 方文军. 杨梅酮的抗氧化活性[J]. 物理化学学报, 2013, 29(07): 1421-1432.
[13] 苏晓玲, 王越奎, 王炎, 贾杰, 高小丽. 含轴向咪唑配体的手性SalenCo(III)配合物ECD谱的理论解析[J]. 物理化学学报, 2011, 27(07): 1633-1639.
[14] 钟爱国, 黄凌, 蒋华江. H2S键合金属(II)咪唑卟啉配合物的结构、光谱和反应活性[J]. 物理化学学报, 2011, 27(04): 837-845.
[15] 吴健, 王瑜, 黄峰, 杨阳, 孟长功. ZSM-5晶体内SnO2团簇的热扩散法合成及表征[J]. 物理化学学报, 2010, 26(06): 1705-1710.