Please wait a minute...
物理化学学报  2019, Vol. 35 Issue (1): 76-83    DOI: 10.3866/PKU.WHXB201712063
所属专题: 非富勒烯有机太阳能电池
论文     
A-D-A型小分子电子给体光伏材料的端基修饰及其光伏性能
贾国骁1,张少青1,*(),杨丽燕2,何畅2,范慧俐1,*(),侯剑辉1,2,*()
1 北京科技大学化学与生物工程学院,北京 100083
2 高分子物理与化学国家重点实验室,北京分子科学国家实验室,中国科学院化学研究所,北京 100190
Development of Benzodithiophene-Based A-D-A Small Molecules with Different Acceptor End Groups for Efficient Organic Solar Cells
Guoxiao JIA1,Shaoqing ZHANG1,*(),Liyan YANG2,Chang HE2,Huili FAN1,*(),Jianhui HOU1,2,*()
1 School of Chemical and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
2 State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
 全文: PDF(2622 KB)   HTML 输出: BibTeX | EndNote (RIS) | Supporting Info
摘要:

有机太阳能电池(OSCs)活性层中的给体材料主要包括共轭聚合物与有机小分子,由于有机小分子给体具有结构确定、易于提纯、重复性高等独特的优势,近年来受到研究工作者的广泛关注。本工作中,我们采取具有良好共平面性的三联苯并二噻吩(TriBDT-T)为推电子(D)中心共轭单元,分别以罗丹宁(RN)、氰基罗丹宁(RCN)和1, 3-茚二酮(IDO)为拉电子(A)共轭端基,设计并合成了三种具有A-D-A型结构的小分子给体材料TriBDT-T-RN、TriBDT-T-RCN和TriBDT-T-IDO。我们对比研究了三种端基对其热分解温度、吸收光谱和分子能级等基本性能的影响,并分别将三种小分子给体与非富勒烯型受体材料IT-4F共混制备器件,详细研究了活性层形貌与光伏性能之间的关系。结果表明,不同的A型端基对小分子给体材料的光学性能、电化学性能、光伏器件中活性层的微观形貌以及能量转换效率(PCE)产生显著影响。基于TriBDT-T-RN:IT-4F、TriBDT-T-RCN:IT-4F和TriBDT-T-IDO:IT-4F的光伏器件的能量转换效率分别为9.25%、6.31%和6.18%。

关键词: 小分子给体端基修饰有机太阳能电池非富勒烯受体A-D-A结构    
Abstract:

In recent years, organic solar cells (OSCs) have attracted increasing attention, and the power conversion efficiency (PCE) of OSCs has markedly improved. To enhance the photovoltaic properties of OSCs, it is important to develop the donor materials in the light-harvesting layer, which mainly include conjugated polymers and small molecules (SMs). Compared with polymeric materials, small-molecule materials have been widely investigated for their superior characteristics, such as well-defined molecular structures that can provide good batch-to-batch reproducibility. In this work, we synthesized three SM donor materials with theacceptor-donor-acceptor (A-D-A) structure by employing the trialkylthienyl-substituted benzodithiophene (TriBDT-T) unit as the D-core unit, and rhodanine (RN), cyano-rhodanine (RCN), and 1, 3-indanone (IDO) as the A end groups, respectively. The optical properties, molecular energy levels, and thermogravimetic characteristics of the three SMs were studied; moreover, the blend morphologies and photovoltaic properties of the devices by employing the non-fullerene (NF) acceptor, IT-4F, were systematically investigated. The results showed that 1) the three SMs exhibit good thermal stabilities as evinced by thermogravimetric analysis (TGA), and all decomposition temperatures exceeded 410 ℃; 2) They all exhibit strong and broad absorption in the visible light range (300–700 nm), and show similar molar extinction coefficients; 3) the HOMO levels are -5.47 eV, -5.54 eV, and -5.44 eV for RN, RCN, and IDO, respectively, implying the clear influence of the different end groups for the energy levels of the A-D-A-type SMs; the slight differences in the optical and electrochemical properties of the corresponding donor material could be attributed to the different electron-withdrawing ability of the A-type end groups. When studying the photovoltaic properties, interestingly, the RN:IT-4F blend was found to form fibrillar-like aggregates with appropriate size, and the corresponding devices exhibited desirable short circuit current (Jsc) and thus the highest PCE value of 9.25%; however, large-size aggregates were formed in the RCN:IT-4F and IDO:IT-4F blend films, resulting in a much lower Jsc and fill factor (FF), and the PCE of the corresponding devices were only around 6%. In summary, by introducing RN, RCN, and IDO as the A units, we synthesized a class of TriBDT-T based A-D-A type SMs. This study shows that terminal A units exert influence on the absorption spectra, molecular energy level, and morphologies after blending with the acceptor material, and hence, the corresponding devices exhibit significant differences in photovoltaic performance. This work also provides useful information for the molecular design of SM donor materials.

Key words: Small molecule donor    Terminal modification    Organic solar cells    Non-fullerene acceptor    Acceptor-Donor-Acceptor structure
收稿日期: 2017-11-08 出版日期: 2017-12-06
中图分类号:  O646  
基金资助: 国家自然科学基金(2170040201);国家科技重大专项(2016YFC0700603);中央高校基本科研业务费专项资金(FRF-TP-17-009A1)
通讯作者: 张少青,范慧俐,侯剑辉     E-mail: shaoqingz@iccas.ac.cn;fanhl@sas.ustb.edu.cn;hjhzlz@iccas.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
贾国骁
张少青
杨丽燕
何畅
范慧俐
侯剑辉

引用本文:

贾国骁,张少青,杨丽燕,何畅,范慧俐,侯剑辉. A-D-A型小分子电子给体光伏材料的端基修饰及其光伏性能[J]. 物理化学学报, 2019, 35(1): 76-83, 10.3866/PKU.WHXB201712063

Guoxiao JIA,Shaoqing ZHANG,Liyan YANG,Chang HE,Huili FAN,Jianhui HOU. Development of Benzodithiophene-Based A-D-A Small Molecules with Different Acceptor End Groups for Efficient Organic Solar Cells. Acta Phys. -Chim. Sin., 2019, 35(1): 76-83, 10.3866/PKU.WHXB201712063.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201712063        http://www.whxb.pku.edu.cn/CN/Y2019/V35/I1/76

图1  本工作中三种小分子给体的合成路线与分子结构
Materials λmax/nm a ε/(L·mol-1·cm-1) b λmax/nm c λedge/nm Egopt/eV d HOMO/eV
RN 546 4.96×104 536 629 1.97 -5.47
RCN 562 4.56×104 550 659 1.88 -5.54
IDO 576 5.2 2×104 564 694 1.78 -5.44
表1  TriBDT-T的光学性质和分子能级
图2  三种TriBDT-T小分子材料及本工作中所使用的受体材料IT-4F在氯仿溶液中的吸收光谱(a)与相应的薄膜吸收光谱(b); TriBDT-T小分子给体材料的循环伏安法测试图(c)与热重分析(TGA)测试(d) *
图3  基于SM:IT-4F光伏器件在最优制备条件下的的J–V曲线(a)及相应的外量子效率(EQE) (b)
Active layer Thickness/nm SVA/s Voc /V Jsc /(mA·cm-2) FF PCE/% a
RN:IT-4F 83 30 0.90(0.90 ± 0.00) 16.88(16.21 ± 0.48) 0.61(0.62 ± 0.01) 9.25(9.09 ± 0.12)
RCN:IT-4F 85 30 0.96(0.97 ± 0.01) 12.30(12.22 ± 0.53) 0.54(0.52 ± 0.03) 6.31(6.10 ± 0.16)
IDO:IT-4F 82 30 0.86(0.85 ± 0.02) 13.83(13.47 ± 0.26) 0.52(0.53 ± 0.01) 6.18(6.05 ± 0.08)
表2  基于三种TriBDT-T小分子给体的光伏器件的性能参数
图4  TriBDT-T:IT-4F在最优条件下的AFM高度图相图和TEM图
1 Li G. ; Zhu R. ; Yang Y. Nat. Photonics 2012, 6 (3), 153.
doi: 10.1038/nphoton.2012.11
2 Brabec C. J. ; Gowrisanker S. ; Halls J. J. ; Laird D. ; Jia S. ; Williams S. P. Adv. Mater. 2010, 22 (34), 3839.
doi: 10.1002/adma.200903697
3 Li Y. F. Accounts Chem Res 2012, 45 (5), 723.
doi: 10.1021/ar2002446
4 Yu G. ; Gao J. ; Hummelen J. C. ; Wudl F. ; Heeger A. J. Science 1995, 270 (5243), 1789.
doi: 10.1126/science.270.5243.1789
5 Zhao W. ; Li S. ; Yao H. ; Zhang S. ; Zhang Y. ; Yang B. ; Hou J. J. Am. Chem. Soc. 2017, 139 (21), 7148.
doi: 10.1021/jacs.7b02677
6 Yao H. F. ; Hou J. H. Acta Polym. Sin. 2016, 11, 1468.
doi: 10.11777/j.issn1000-3304.2016.16216
姚惠峰; 侯剑辉. 高分子学报, 2016, 11, 1468.
doi: 10.11777/j.issn1000-3304.2016.16216
7 Zhang S. Q. ; Hou J. H. Acta Phys. -Chim. Sin. 2017, 33 (12), 2327.
doi: 10.3866/PKU.WHXB201706161
张少青; 侯剑辉. 物理化学学报, 2017, 33 (12), 2327.
doi: 10.3866/PKU.WHXB201706161
8 Li W. N. ; Yao H. F. ; Zhang H. ; Li S. S. ; Hou J. H. Chem.-Asian J. 2017, 12 (17), 2160.
doi: 10.1002/asia.201700692
9 Nielsen C. B. ; Holliday S. ; Chen H. Y. ; Cryer S. J. ; McCulloch I. Accounts Chem Res 2015, 48 (11), 2803.
doi: 10.1021/acs.accounts.5b00199
10 Liang N. ; Jiang W. ; Hou J. ; Wang Z. Mater. Chem. Front. 2017, 1 (7), 1291.
doi: 10.1039/c6qm00247a
11 Sun K. ; Xiao Z. ; Lu S. ; Zajaczkowski W. ; Pisula W. ; Hanssen E. ; White J. M. ; Williamson R. M. ; Subbiah J. ; Ouyang J. ; et al Nat. Commun. 2015, 6, 6013.
doi: 10.1038/ncomms7013
12 Shen S. ; Jiang P. ; He C. ; Zhang J. ; Shen P. ; Zhang Y. ; Yi Y. ; Zhang Z. ; Li Z. ; Li Y. Chem. Mater. 2013, 25 (11), 2274.
doi: 10.1021/cm400782q
13 Li M. ; Liu F. ; Wan X. ; Ni W. ; Kan B. ; Feng H. ; Zhang Q. ; Yang X. ; Wang Y. ; Zhang Y. ; et al Adv. Mater. 2015, 27 (40), 6296.
doi: 10.1002/adma.201502645
14 Zhou J. ; Zuo Y. ; Wan X. ; Long G. ; Zhang Q. ; Ni W. ; Liu Y. ; Li Z. ; He G. ; Li C. ; et al J. Am. Chem. Soc. 2013, 135 (23), 8484.
doi: 10.1021/ja403318y
15 Li M. ; Ni W. ; Wan X. ; Zhang Q. ; Kan B. ; Chen Y. J. Mater. Chem. A 2015, 3 (9), 4765.
doi: 10.1039/c4ta06452f
16 Deng D. ; Zhang Y. ; Yuan L. ; He C. ; Lu K. ; Wei Z. Adv. Energy Mater. 2014, 4 (17), 1400538.
doi: 10.1002/aenm.201400538
17 Gao L. ; Zhang J. ; He C. ; Zhang Y. ; Sun Q. J. ; Li Y. F. Sci. China-Chem. 2014, 57 (7), 966.
doi: 10.1007/s11426-014-5114-y
18 Badgujar S. ; Lee G. Y. ; Park T. ; Song C. E. ; Park S. ; Oh S. ; Shin W. S. ; Moon S. J. ; Lee J. C. ; Lee S. K. Adv. Energy Mater. 2016, 6 (12), 1600228.
doi: 10.1002/aenm.201600228
19 Zhang S. ; Yang L. ; Liu D. ; He C. ; Zhang J. ; Zhang Y. ; Hou J. Sci. China-Chem. 2017.
doi: 10.1007/s11426-017-9121-0
20 Cho M. J. ; Park G. E. ; Park S. Y. ; Kim Y. U. ; Choi D. H. RSC Adv. 2017, 7 (62), 38773.
doi: 10.1039/c7ra06879d
21 Oliva M. M. ; Riano A. ; Arrechea-Marcos I. ; Ramos M. M. ; Gomez R. ; Algarra M. ; Ortiz R. P. ; Navarrete J. T. L. ; Segura J. L. ; Casado J. J. Phys. Chem. C 2016, 120 (40), 23276.
doi: 10.1021/acs.jpcc.6b08123
22 Wang W. ; Shen P. ; Dong X. ; Weng C. ; Wang G. ; Bin H. ; Zhang J. ; Zhang Z. G. ; Li Y. ACS Appl. Mater. Interfaces 2017, 9 (5), 4614.
doi: 10.1021/acsami.6b14114
23 Qiu B. ; Xue L. ; Yang Y. ; Bin H. ; Zhang Y. ; Zhang C. ; Xiao M. ; Park K. ; Morrison W. ; Zhang Z. G. ; et al Chem. Mater. 2017, 29, 7543.
doi: 10.1021/acs.chemmater.7b02536
24 Yao H. ; Cui Y. ; Yu R. ; Gao B. ; Zhang H. ; Hou J. Angew. Chem., Int. Ed. 2017, 56 (11), 3045.
doi: 10.1002/anie.201610944
25 Duan R. M. ; Cui Y. ; Zhao Y. F. ; Li C. ; Chen L. ; Hou J. H. ; Wagner M. ; Baumgarten M. ; He C. ; Mullen K. ChemSusChem 2016, 9 (9), 973.
doi: 10.1002/cssc.201501626
26 Zhang J. ; Zhu X. W. ; He C. ; Bin H. J. ; Xue L. W. ; Wang W. G. ; Yang Y. K. ; Yuan N. Y. ; Ding J. N. ; Wei Z. X. ; et al J. Mater. Chem. A 2016, 4 (30), 11747.
doi: 10.1039/c6ta03695c
27 Tang W. ; Huang D. ; He C. ; Yi Y. ; Zhang J. ; Di C. ; Zhang Z. ; Li Y. Org. Electron. 2014, 15 (6), 1155.
doi: 10.1016/j.orgel.2014.03.005
28 Zhang Q. ; Kan B. ; Liu F. ; Long G. ; Wan X. ; Chen X. ; Zuo Y. ; Ni W. ; Zhang H. ; Li M. ; et al Nat. Photonics 2014, 9 (1), 35.
doi: 10.1038/nphoton.2014.269
29 Mercier L. G. ; Mishra A. ; Ishigaki Y. ; Henne F. ; Schulz G. ; Bauerle P. Org. Lett. 2014, 16 (10), 2642.
doi: 10.1021/ol500809e
30 Lin Y. ; Wang J. ; Zhang Z. G. ; Bai H. ; Li Y. ; Zhu D. ; Zhan X. Adv. Mater. 2015, 27 (7), 1170.
doi: 10.1002/adma.201404317
31 Yang Y. ; Zhang Z. G. ; Bin H. ; Chen S. ; Gao L. ; Xue L. ; Yang C. ; Li Y. J. Am. Chem. Soc. 2016, 138 (45), 15011.
doi: 10.1021/jacs.6b09110
32 Yao H. ; Chen Y. ; Qin Y. ; Yu R. ; Cui Y. ; Yang B. ; Li S. ; Zhang K. ; Hou J. Adv. Mater. 2016, 28 (37), 8283.
doi: 10.1002/adma.201602642
33 Lin Y. ; Li T. ; Zhao F. ; Han L. ; Wang Z. ; Wu Y. ; He Q. ; Wang J. ; Huo L. ; Sun Y. ; et al Adv. Energy Mater. 2016, 6 (18), 1600854.
doi: 10.1002/aenm.201600854
34 Yao H. ; Ye L. ; Hou J. ; Jang B. ; Han G. ; Cui Y. ; Su G. M. ; Wang C. ; Gao B. ; Yu R. ; et al Adv. Mater. 20117, 29 (21)
doi: 10.1002/adma.201700254
35 Yang L. ; Zhang S. ; He C. ; Zhang J. ; Yao H. ; Yang Y. ; Zhang Y. ; Zhao W. ; Hou J. J. Am. Chem. Soc. 2017, 139 (5), 1958.
doi: 10.1021/jacs.6b11612
36 Ni W. ; Li M. ; Wan X. ; Zuo Y. ; Kan B. ; Feng H. ; Zhang Q. ; Chen Y. Sci. China-Chem. 2014, 58 (2), 339.
doi: 10.1007/s11426-014-5220-x
37 Kim J. ; Yun M. H. ; Anant P. ; Cho S. ; Jacob J. ; Kim J. Y. ; Yang C. Chemistry 2011, 17 (51), 14681.
doi: 10.1002/chem.201101258
38 Cheng Y. J. ; Ho Y. J. ; Chen C. H. ; Kao W. S. ; Wu C. E. ; Hsu S. L. ; Hsu C. S. Macromolecules 2012, 45 (6), 2690.
doi: 10.1021/ma202764v
39 Liu Y. ; Chen C. C. ; Hong Z. ; Gao J. ; Yang Y. M. ; Zhou H. ; Dou L. ; Li G. ; Yang Y. Sci. Rep. 2013, 3, 3356.
doi: 10.1038/srep03356
40 Yong W. ; Zhang M. ; Xin X. ; Li Z. ; Wu Y. ; Guo X. ; Yang Z. ; Hou J. J. Mater. Chem. A 2013, 1 (45), 14214.
doi: 10.1039/c3ta12229h
[1] 何畅,侯剑辉. 基于非富勒烯受体的溶液加工型全小分子太阳能电池研究进展[J]. 物理化学学报, 2018, 34(11): 1202-1210.
[2] 张少青,侯剑辉. 面向非富勒烯型有机光伏电池的聚合物给体材料设计[J]. 物理化学学报, 2017, 33(12): 2327-2338.
[3] 刘继翀,唐峰,叶枫叶,陈琪,陈立桅. 利用扫描开尔文探针显微镜观察薄膜光电器件能级排布[J]. 物理化学学报, 2017, 33(10): 1934-1943.
[4] 刘艳苹,吴义室,付红兵. 单重态激子裂分的研究进展[J]. 物理化学学报, 2016, 32(8): 1880-1893.