Please wait a minute...
物理化学学报  2019, Vol. 35 Issue (1): 28-48    DOI: 10.3866/PKU.WHXB201801042
综述     
利用基于直接动力学的轨线面跳跃方法处理非绝热过程
彭佳伟1,3,谢宇1,胡德平1,3,杜利凯2,兰峥岗1,3,*()
1 中国科学院青岛生物能源与过程研究所中科院生物基材料重点实验室,山东 青岛 266101
2 华中农业大学信息学院湖北省农业生物信息学重点实验室,武汉 430070
3 中国科学院大学,北京 100049
Treatment of Nonadiabatic Dynamics by On-The-Fly Trajectory Surface Hopping Dynamics
Jiawei PENG1,3,Yu XIE1,Deping HU1,3,Likai DU2,Zhenggang LAN1,3,*()
1 CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong Province, P. R. China
2 Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, P. R. China
3 University of Chinese Academy of Sciences, Beijing 100049, P. R. China
 全文: PDF(677 KB)   HTML 输出: BibTeX | EndNote (RIS) |
摘要:

势能面交叉引起的非绝热过程广泛存在于光化学和光物理中。对这一过程进行描述是理论化学的重要挑战之一。非绝热过程涉及原子核与电子之间的耦合运动,因此量子化学的基本假设之一“玻恩-奥本海默”近似被打破,所以对其进行描述需要发展新的动力学理论方法。在这些方法中,Tully发展的最少轨线面跳跃方法凭借易于程序化、便于计算等优点已经发展成为处理非绝热问题的主要动力学方法之一。其中原子核以经典的方式在单一势能面上进行演化,电子以量子的方式沿着同一轨线进行演化。在整个演化过程中,非绝热跃迁通过轨线在不同势能面间的跃迁来描述,其中跳跃发生的几率与电子的演化有关。如果将该方法与从头算直接动力学相结合,可以在全原子水平上研究实际分子体系的非绝热动力学,给出其激发态寿命、非绝热动力学中分子的主要运动方式、反应通道以及分支比等重要信息。本文旨在讨论最少面跳跃直接动力学方法研究非绝热问题的一些进展,包括动力学基本理论,特别关注将最少面跳跃方法和直接动力学结合的数值实现细节,同时讨论该方法在研究实际体系当中的一些应用,并对轨线面跳跃方法下一步发展的一些方向进行合理的展望。

关键词: 非绝热动力学面跳跃动力学直接动力学锥形交叉半经典动力学    
Abstract:

Nonadiabatic processes widely exist in photochemistry and photophysics. The theoretical treatment of nonadiabatic processes is an important challenge in theoretical chemistry. In nonadiabatic dynamics, the well-known "Born-Oppenheimer approximation" breaks down due to the involvement of strong nuclear-electronic coupled motions. Hence, the development of a theoretical framework is required for the proper treatment of nonadiabatic dynamics. The fewest-switches trajectory surface-hopping method developed by Tully is one of the most widely used methods in the treatment of nonadiabatic processes because of its rather simple numerical implementation. In this approach, the nuclear degrees of freedom are propagated on the potential energy surface of an electronic state using the classical equations of motion, while the electronic degrees of freedom are propagated along the same trajectory according to the time-dependent Schr?dinger equation. Nonadiabatic effects are included by allowing sudden hops between different potential energy surfaces. After averaging over many trajectories, a reasonable description of nonadiabatic dynamics is achieved at low computational cost. Particularly, when we combine the trajectory surface-hopping dynamics with on-the-fly molecular dynamics, it is possible to describe the nonadiabatic dynamics of realistic polyatomic molecular systems at a fully atomic level with all degrees of freedom included. After the introduction of hybrid multiscale methods, the simulation of photochemistry in solutions and in biological systems becomes possible. The simulation results provide important information concerning the nonadiabatic dynamics of realistic polyatomic systems, such as excited-state lifetime, major active molecular motions, reaction channels, and branching ratio. This review article summarizes some progresses in this field. After briefly introducing the basic theory of widely used fewest switches surface-hopping dynamics methods, we mainly focus on several numerical details in the implementation of on-the-fly fewest switches surface-hopping dynamics. The seamless combination of surface-hopping dynamics and electronic-structure calculations is emphasized in this review, rather than an exhaustive discussion of rigorous nonadiabatic dynamics theories. Numerical methods to estimate nonadiabatic coupling terms are discussed, which allow us to perform the trajectory surface-hopping calculations when the nonadiabatic coupling vectors are not available in the electronic structure calculations. Several important issues, such as decoherence corrections, diabatic or adiabatic representations, and initial sampling methods are discussed in detail. We also summarize the theoretical treatment of the nonadiabatic dynamics of some interesting molecular systems, which include the photostability of DNA, photo-isomerization of organic systems, photochemistry of transition metal complexes, and photovoltaics. Finally, we discuss the theoretical challenges of this direct dynamics approach and provide an outlook of this field from our personal perspective.

Key words: Nonadiabatic dynamics    Surface hopping dynamics    On-the-fly dynamics    Conical intersection    Semiclassical dynamics
收稿日期: 2017-11-29 出版日期: 2018-01-04
中图分类号:  O641  
基金资助: 国家自然科学基金(21673266);国家自然科学基金(21503248);山东省自然科学基金委省杰出青年基金(JQ201504)
通讯作者: 兰峥岗     E-mail: lanzg@qibebt.ac.cn
作者简介: |兰峥岗,1977年生。2000年本科毕业于中国科学技术大学。2003年硕士毕业于中国科学院化学所。2007年博士毕业于慕尼黑工业大学。现为中国科学院青岛生物能源与过程研究所研究员。主要研究方向为非绝热动力学和激发态过程
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
彭佳伟
谢宇
胡德平
杜利凯
兰峥岗

引用本文:

彭佳伟,谢宇,胡德平,杜利凯,兰峥岗. 利用基于直接动力学的轨线面跳跃方法处理非绝热过程[J]. 物理化学学报, 2019, 35(1): 28-48, 10.3866/PKU.WHXB201801042

Jiawei PENG,Yu XIE,Deping HU,Likai DU,Zhenggang LAN. Treatment of Nonadiabatic Dynamics by On-The-Fly Trajectory Surface Hopping Dynamics. Acta Phys. -Chim. Sin., 2019, 35(1): 28-48, 10.3866/PKU.WHXB201801042.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201801042        http://www.whxb.pku.edu.cn/CN/Y2019/V35/I1/28

`s\vl VE`s\vl Vgn='top' align='right' style="padding-right:13px;">217
1 Born M. ; Oppenheimer R. Ann. Phys. 1927, 389, 457.
doi: 10.1002/andp.19273892002
2 Domcke W. ; Yarkony D. R. ; K?ppel H. Conical Intersections: Electronic Structure, Dynamics and Spectroscopy World Scientic: Singapore,, 2004.
3 Baer M. Beyond Born-Oppenheimer: Electronic Nonadiabatic Coupling Terms And Conical Intersections Sons: Hoboken, NJ, USA,, 2006.
4 Baer M. Adv. Chem. Phys. 2002, 124, 39.
5 Beck M. H. ; Jackle A. ; Worth G. A. ; Meyer H. D. Phys. Rep. 2000, 324, 1.
doi: 10.1016/S0370-1573(99)00047-2
6 Wang H. B. ; Thoss M. J. Chem. Phys. 2003, 119, 1289.
doi: 10.1063/1.1580111
7 Manthe U. J. Chem. Phys. 2008, 128, 164116.
doi: 10.1063/1.2902982
8 Manthe U. J. Chem. Phys. 2009, 130, 054109.
doi: 10.1063/1.3069655
9 Vendrell O. ; Meyer H. J. Chem. Phys 2011, 134, 044135.
doi: 10.1063/1.3535541
10 Zhong X. ; Zhao Y. J. Chem. Phys. 2013, 138, 014111.
doi: 10.1063/1.4773319
11 Han L. ; Zhong X. ; Liang W. ; Zhao Y. J. Chem. Phys. 2014, 140, 214107.
doi: 10.1063/1.4879955
12 May V. ; Kühn O. Charge and Energy Transfer Dynamics in Molecular Systems Wiley-VCH Verlag GmbH & Co.: Weinheim, Germany, 2011.
13 Chen L. P. ; Zheng R. H. ; Shi Q. ; Yan Y. J. J. Chem. Phys. 2009, 131, 094502.
doi: 10.1063/1.3213013
14 Shao J. H. ; Makri N. Chem. Phys. 2001, 268, 1.
doi: 10.1016/S0301-0104(01)00286-5
15 Stock G. ; Thoss M. Adv. Chem. Phys. 2005, 131, 243.
doi: 10.1002/0471739464.ch5
16 Meyer H. D. ; Miller W. H. J. Chem. Phys. 1979, 71, 2156.
doi: 10.1063/1.438598
17 Meyer H. D. ; Miller W. H. J. Chem. Phys. 1979, 70, 3214.
doi: 10.1063/1.437910
18 Stock G. ; Thoss M. Phys. Rev. Lett. 1997, 78, 578.
doi: 10.1103/PhysRevLett.78.578
19 Cotton S. J. ; Miller W. H. J. Phys. Chem. A 2013, 117, 7190.
doi: 10.1021/jp401078u
20 Liu J. J. Chem. Phys. 2016, 145, 204105.
doi: 10.1063/1.4967815
21 Tao G. J. Chem. Phys. 2016, 144, 094108.
doi: 10.1063/1.4943006
22 Tao G. J. Chem. Phys. 2017, 147, 044107.
doi: 10.1063/1.4985898
23 Tully J. C. Int. J. Quantum Chem. 1991, 40, 299.
doi: 10.1002/qua.560400830
24 Tully J. Faraday Discuss. 1998, 110, 407.
doi: 10.1039/a801824c
25 Drukker K. J. Comput. Phys. 1999, 153, 225.
doi: 10.1006/jcph.1999.6287
26 Fiedler S. L. ; Eloranta J. Mol. Phys. 2010, 108, 1471.
doi: 10.1080/00268971003720314
27 Andrade X. ; Castro A. ; Zueco D. ; Alonso J. ; Echenique P. ; Falceto F. ; Rubio A. J. Chem. Theory Comput. 2009, 5, 728.
doi: 10.1021/ct800518j
28 Zhu C. ; Jasper A. W. ; Truhlar D. G. J. Chem. Phys. 2004, 120, 5543.
doi: 10.1063/1.1648306
29 Tully J. C. ; Preston R. K. J. Chem. Phys. 1971, 55, 562.
doi: 10.1063/1.1675788
30 Tully J. C. J. Chem. Phys. 1990, 93, 1061.
doi: 10.1063/1.459170
31 Hammes-Schiffer S. ; Tully J. C. J. Chem. Phys. 1994, 101, 4657.
doi: 10.1063/1.467455
32 Blais N. C. ; Truhlar D. G. J. Chem. Phys. 1983, 79, 1334.
doi: 10.1063/1.445888
33 Volobuev Y. L. ; Hack M. D. ; Topaler M. S. ; Truhlar D. G. J. Chem. Phys. 2000, 112, 9716.
doi: 10.1063/1.481609
34 Jasper A. W. ; Stechmann S. N. ; Truhlar D. G. J. Chem. Phys. 2002, 117, 10427.
doi: 10.1063/1.1519005
35 Zhu C. ; Nakamura H. J. Chem. Phys. 1997, 106, 2599.
doi: 10.1063/1.473364
36 Zhu C. ; Teranishi Y. ; Nakamura H. Adv. Chem. Phys. 2001, 117, 127.
doi: 10.1002/9780470141779.ch2
37 Yue L. ; Yu L. ; Xu C. ; Lei Y. ; Liu Y. ; Zhu C. ChemPhysChem 2017, 18, 1415.
doi: 10.1002/cphc.201700049
38 Persico M. ; Granucci G. Theor. Chem. Acc. 2014, 133, 1526.
doi: 10.1007/s00214-014-1526-1
39 Du L. K. ; Lan Z. G. J. Chem. Theory Comput. 2015, 11, 1360.
doi: 10.1021/ct501106d
40 Barbatti M. ; Granucci G. ; Persico M. ; Ruckenbauer M. ; Vazdar M. ; Eckert-Maksi? M. ; Lischka H. J. Photochem. Photobiol. A: Chem. 2007, 190, 228.
doi: 10.1016/j.jphotochem.2006.12.008
41 Mitri? R. ; Werner U. ; Bona?i?-Kouteck V. J. Chem. Phys. 2008, 129, 164118.
doi: 10.1063/1.3000012
42 Fabiano E. ; Thiel W. J. Phys. Chem. A 2008, 112, 6859.
doi: 10.1021/jp8033402
43 Nelson T. ; Fernandez-Alberti S. ; Chernyak V. ; Roitberg A. E. ; Tretiak S. J. Chem. Phys. 2012, 136, 054108.
doi: 10.1063/1.3680565
44 Richter M. ; Marquetand P. ; Gonzalez-Vazquez J. ; Sola I. ; González L. J. Chem. Theory Comput. 2012, 8, 374.
doi: 10.1021/ct2005819
45 Doltsinis N. L. ; Marx D. Phys. Rev. Lett. 2002, 88, 166402.
doi: 10.1103/PhysRevLett.88.166402
46 Du L. K. ; Lan Z. G. J. Chem. Theory Comput. 2015, 11, 4522.
doi: 10.1021/acs.jctc.5b00654
47 Warshel A. ; Levitt M. J. Mol. Biol. 1976, 103, 227.
doi: 10.1016/0022-2836(76)90311-9
48 Major D. T. ; Garcia-Viloca M. ; Gao J. L. J. Chem. Theory Comput. 2006, 2, 236.
doi: 10.1021/ct050257t
49 Gao J. L. ; Xia X. F. Science 1992, 258, 631.
doi: 10.1126/science.1411573
50 Kamerlin S. C. L. ; Haranczyk M. ; Warshel A. J. Phys. Chem. B 2009, 113, 1253.
doi: 10.1021/jp8071712
51 Xie W. S. ; Song L. C. ; Truhlar D. G. ; Gao J. L. J. Phys. Chem. B 2008, 112, 14124.
doi: 10.1021/jp804512f
52 Senn H. M. ; Thiel W. Angew. Chem. Int. Ed. 2009, 48, 1198.
doi: 10.1002/anie.200802019
53 Eckert-Maksi? M. ; Vazdar M. ; Ruckenbauer M. ; Barbatti M. ; Müller T. ; Lischka H. Phys. Chem. Chem. Phys. 2010, 12, 12719.
doi: 10.1039/c0cp00174k
54 Ruckenbauer M. ; Barbatti M. ; Sellner B. ; Muller T. ; Lischka H. J. Phys. Chem. A 2010, 114, 12585.
doi: 10.1021/jp108844g
55 Ruckenbauer M. ; Barbatti M. ; Mu?ller T. ; Lischka H. J. Phys. Chem. A 2013, 117, 2790.
doi: 10.1021/jp400401f
56 Antol I. ; Eckert-Maksi? M. ; Vazdar M. ; Ruckenbauer M. ; Lischka H. Phys. Chem. Chem. Phys. 2012, 14, 13262.
doi: 10.1039/c2cp41830d
57 Lan Z. G. ; Lu Y. ; Fabiano E. ; Thiel W. ChemPhysChem 2011, 12, 1989.
doi: 10.1002/cphc.201001054
58 Cattaneo P. ; Granucci G. ; Persico M. J. Phys. Chem. A 1999, 103, 3364.
doi: 10.1021/jp9838238
59 Nieber H. ; Hellweg A. ; Doltsinis N. L. J. Am. Chem. Soc. 2010, 132, 1778.
doi: 10.1021/ja9100497
60 Markwick P. R. L. ; Doltsinis N. L. J. Chem. Phys. 2007, 126, 175102.
doi: 10.1063/1.2728897
61 Bockmann M. ; Doltsinis N. L. ; Marx D. Phys. Rev. E 2008, 78, 036101.
doi: 10.1103/PhysRevE.78.036101
62 Polli D. ; Altoè P. ; Weingart O. ; Spillane K. M. ; Manzoni C. ; Brida D. ; Tomasello G. ; Orlandi G. ; Kukura P. ; Mathies R. A. Nature 2010, 467, 440.
doi: 10.1038/nature09346
63 Doltsinis N. L. Quantum Simulations of Complex Many-Body Systems: From Theory to Algorithms NIC-Directors: Jülich, Germany,, 2002, pp. 377- 397.
64 Barbatti M. WIREs Comput. Mol. Sci. 2011, 1, 620.
doi: 10.1002/wcms.64
65 Domcke W. ; Yarkony D. R. ; K?ppel H. Conical Intersections: Theory, Computation and Experiment World Scientific: Singapore,, 2011.
66 Lan Z. ; Shao J. Prog. Chem. 2012, 24, 1105.
67 Wang L. J. ; Akimov A. ; Prezhdo O. V. J. Phys. Chem. Lett. 2016, 7, 2100.
doi: 10.1021/acs.jpclett.6b00710
68 Mead C. A. ; Truhlar D. G. J. Chem. Phys. 1982, 77, 6090.
doi: 10.1063/1.443853
69 Ambrosek D. ; K hn A. ; Schulze J. ; Kühn O. J. Phys. Chem. A 2012, 116, 11451.
doi: 10.1021/jp3069706
70 Hsu C. P. Acc. Chem. Res. 2009, 42, 509.
doi: 10.1021/ar800153f
71 Cave R. J. ; Newton M. D. Chem. Phys. Lett. 1996, 249, 15.
doi: 10.1016/0009-2614(95)01310-5
72 Subotnik J. E. ; Cave R. J. ; Steele R. P. ; Shenvi N. J. Chem. Phys. 2009, 130, 234102.
doi: 10.1063/1.3148777
73 Grofe A. ; Qu Z. ; Truhlar D. G. ; Li H. ; Gao J. J. Chem. Theory Comput. 2017, 13, 1176.
doi: 10.1021/acs.jctc.6b01176
74 Middleton C. T. ; de La Harpe K. ; Su C. ; Law Y. K. ; Crespo-Hernández C. E. ; Kohler B. Annu. Rev. Phys. Chem. 2009, 60, 217.
doi: 10.1146/annurev.physchem.59.032607.093719
75 Crespo-Hernández C. E. ; Cohen B. ; Hare P. M. ; Kohler B. Chem. Rev. 2004, 104, 1977.
doi: 10.1021/cr0206770
76 Sundstr m V. Annu. Rev. Phys. Chem. 2008, 59, 53.
doi: 10.1146/annurev.physchem.59.032607.093615
77 Levine B. G. ; Martínez T. J. Annu. Rev. Phys. Chem. 2007, 58, 613.
doi: 10.1146/annurev.physchem.57.032905.104612
78 Ben-Nun M. ; Martínez T Adv. Chem. Phys 2002, 121, 439.
doi: 10.1002/0471264318.ch7
79 Ben-Nun M. ; Martínez T. J. Chem. Phys. Lett. 1998, 298, 57.
doi: 10.1016/S0009-2614(98)01115-4
80 Schultz T. ; Quenneville J. ; Levine B. ; Toniolo A. ; Martínez T. J. ; Lochbrunner S. ; Schmitt M. ; Shaffer J. P. ; Zgierski M. Z. ; Stolow A. J. Am. Chem. Soc. 2003, 125, 8098.
doi: 10.1021/ja021363x
81 Naqvi K. R. ; Brown W. B. Int. J. Quantum Chem. 1972, 6, 271.
doi: 10.1002/qua.560060206
82 von Neumann J. ; Wigner E. Physikalische Zeitschrift 1929, 30, 467.
83 Jahn H. A. ; Teller E. Proc. R. Soc. Lond. Ser. A-Math. Phys. Sci. 1937, 161, 220.
doi: 10.1098/rspa.1937.0142
84 González L. ; Escudero D. ; Serrano-Andrés L. ChemPhysChem 2012, 13, 28.
doi: 10.1002/cphc.201100200
85 Richter M. ; Marquetand P. ; Gonza?lez-Va?zquez J. S. ; Sola I. ; Gonza?lez L. J. Phys. Chem. Lett. 2012, 3, 3090.
doi: 10.1021/jz301312h
86 Cui G. ; Thiel W. J. Phys. Chem. Lett. 2014, 5, 2682.
doi: 10.1021/jz501159j
87 Richter M. ; Marquetand P. ; González-Vázquez J. ; Sola I. ; González L. J. Chem. Theory Comput. 2011, 7, 1253.
doi: 10.1021/ct1007394
88 Tavernelli I. ; Curchod B. F. ; Rothlisberger U. Chem. Phys. 2011, 391, 101.
doi: 10.1016/j.chemphys.2011.03.021
89 Eng J. ; Gourlaouen C. ; Gindensperger E. ; Daniel C. Acc. Chem. Res. 2015, 48, 809.
doi: 10.1021/ar500369r
90 Chergui M. Acc. Chem. Res. 2015, 48, 801.
doi: 10.1021/ar500358q
91 Behler J. ; Delley B. ; Lorenz S. ; Reuter K. ; Scheffler M. Phys. Rev. Lett. 2005, 94, 036104.
doi: 10.1103/PhysRevLett.94.036104
92 Carbogno C. ; Behler J. ; Gro A. ; Reuter K. Phys. Rev. Lett. 2008, 101, 096104.
doi: 10.1103/PhysRevLett.101.096104
93 Brixner T. ; Stenger J. ; Vaswani H.M. ; Cho M. ; Blankenship R.E. ; Fleming G. R. Nature 2005, 434, 625.
doi: 10.1038/nature03429
94 Fleming G. R. ; Scholes G. D. Nature 2004, 431, 256.
doi: 10.1038/431256a
95 Bjerre A. ; Nikitin E. Chem. Phys. Lett. 1967, 1, 179.
doi: 10.1016/0009-2614(67)85041-3
96 Lisinetskaya P. G. ; Mitric R. Phys. Rev. A 2011, 83, 033408.
doi: 10.1103/Physreva.83.033408
97 Petersen J. ; Mitric R. Phys. Chem. Chem. Phys. 2012, 14, 8299.
doi: 10.1039/c2cp40747g
98 Gao X. ; Thiel W. Phys. Rev. E 2017, 95, 013308.
doi: 10.1103/Physreve.95.013308
99 Shushkov P. ; Li R. ; Tully J. C. J. Chem. Phys. 2012, 137, 22A.
doi: 10.1063/1.4766449
100 Shenvi N. ; Subotnik J. E. ; Yang W. J. Chem. Phys. 2011, 135, 024101.
doi: 10.1063/1.3603447
101 Gorshkov V. N. ; Tretiak S. ; Mozyrsky D. Nat. Commun. 2013, 4, 2144.
doi: 10.1038/ncomms3144
102 Subotnik J. E. ; Shenvi N. J. Chem. Phys. 2011, 134, 024105.
doi: 10.1063/1.3506779
103 Akimov A. V. ; Long R. ; Prezhdo O. V. J. Chem. Phys. 2014, 140, 194107.
doi: 10.1063/1.4875702
104 Fernandez-Alberti S. ; Roitberg A. E. ; Nelson T. ; Tretiak S. J. Chem. Phys. 2012, 137, 014512.
doi: 10.1063/1.4732536
105 Wang L. ; Beljonne D. J. Phys. Chem. Lett. 2013, 4, 1888.
doi: 10.1021/jz400871j
106 Wang L. ; Prezhdo O. V. J. Phys. Chem. Lett. 2014, 5, 713.
doi: 10.1021/jz500025c
107 Akimov A. V. ; Trivedi D. ; Wang L. ; Prezhdo O. V. J. Phys. Soc. Jpn. 2015, 84, 094002.
doi: 10.7566/JPSJ.84.094002
108 Wang L. ; Trivedi D. ; Prezhdo O. V. J. Chem. Theory Comput. 2014, 10, 3598.
doi: 10.1021/ct5003835
109 Wang L. ; Sifain A. E. ; Prezhdo O. V. J. Phys. Chem. Lett. 2015, 6, 3827.
doi: 10.1021/acs.jpclett.5b01502
110 Wang L. ; Sifain A. E. ; Prezhdo O. V. J. Chem. Phys. 2015, 143, 191102.
doi: 10.1063/1.4935971
111 Jaeger H. M. ; Fischer S. ; Prezhdo O. V. J. Chem. Phys. 2012, 137, 22A.
doi: 10.1063/1.4757100
112 Akimov A. V. ; Prezhdo O. V. Phys. Rev. Lett. 2014, 113, 153003.
doi: 10.1103/PhysRevLett.113.153003
113 Spencer J. ; Gajdos F. ; Blumberger J. J. Chem. Phys. 2016, 145, 064102.
doi: 10.1063/1.4960144
114 Martens C. C. J. Phys. Chem. Lett. 2016, 7, 2610.
doi: 10.1021/acs.jpclett.6b01186
115 Pechkuas P. Phys. Rev. 1969, 181, 174.
doi: 10.1103/PhysRev.181.174
116 Herman M. F. J. Chem. Phys. 1984, 81, 754.
doi: 10.1063/1.447708
117 Coker D. F. ; Xiao L. J. Chem. Phys. 1995, 102, 496.
doi: 10.1063/1.469428
118 Miller W. H. ; George T. F. J. Chem. Phys. 1972, 56, 5637.
doi: 10.1063/1.1677083
119 Webster F. ; Wang E. T. ; Rossky P. J. ; Friesner R. A. J. Chem. Phys. 1994, 100, 4835.
doi: 10.1063/1.467204
120 Tapavicza E. ; Tavernelli I. ; Rothlisberger U. ; Filippi C. ; Casida M. E. J. Chem. Phys. 2008, 129, 124108.
doi: 10.1063/1.2978380
121 Tapavicza E. ; Tavernelli I. ; Rothlisberger U. Phys. Rev. Lett. 2007, 98, 023001.
doi: 10.1103/PhysRevLett.98.023001
122 Jasper A. W. ; Stechmann S. N. ; Truhlar D. G. J. Chem. Phys. 2002, 116, 5424.
doi: 10.1063/1.1453404
123 Müller U. ; Stock G. J. Chem. Phys. 1997, 107, 6230.
doi: 10.1063/1.474288
124 Jasper A. W. ; Truhlar D. G. Chem. Phys. Lett. 2003, 369, 60.
doi: 10.1016/S0009-2614(02)01990-5
125 Jasper A. W. ; Hack M. D. ; Truhlar D. G. J. Chem. Phys. 2001, 115, 1804.
doi: 10.1063/1.1377891
126 Jain A. ; Subotnik J. E. J. Chem. Phys. 2015, 143, 134107.
doi: 10.1063/1.4930549
127 Sifain A. E. ; Wang L. ; Prezhdo O. V. J. Chem. Phys. 2016, 144, 211102.
doi: 10.1063/1.4953444
128 Tannor D. J. Introduction to Quantum Mechanics: a Time-Dependent Perspective Sausalito, CA, USA: University Science Books, 2007.
129 Wigner E. Phys. Rev. 1932, 40, 749.
doi: 10.1103/PhysRev.40.749
130 O'Connell R. Compend. Quantum Phys. 2009, 851
131 Sels D. ; Brosens F. Phys. Rev. E 2013, 88, 042101.
doi: 10.1103/PhysRevE.88.042101
132 Marx D. ; Hutter J. Ab Initio Molecular Dynamics: Basic Theory And Advanced Methods Cambridge, UK: Cambridge University Press, 2009.
133 Griffiths D. J. Introduction to Quantum Mechanics Cambridge, UK: Cambridge University Press, 2016.
134 Roos B. ; Lawley K. Adv. Chem. Phys. 1987, 69, 399.
135 Hirao K. Recent Advances in Multireference Methods Singapore: World Scientific, 1999.
136 Andersson K. ; Malmqvist P. A. ; Roos B. O. ; Sadlej A. J. ; Wolinski K. J. Phys. Chem.-US 1990, 94, 5483.
doi: 10.1021/j100377a012
137 Lischka H. ; Shepard R. ; Pitzer R. M. ; Shavitt I. ; Dallos M. ; Müller T. ; Szalay P. G. ; Seth M. ; Kedziora G. S. ; Yabushita S. Phys. Chem. Chem. Phys. 2001, 3, 664.
doi: 10.1039/b008063m
138 Weber W. ; Thiel W. Theor. Chem. Acc. 2000, 103, 495.
doi: 10.1007/s002149900083
139 Strodel P. ; Tavan P. J. Chem. Phys. 2002, 117, 4677.
doi: 10.1063/1.1497678
140 Silva-Junior M. R. ; Thiel W. J. Chem. Theory Comput. 2010, 6, 1546.
doi: 10.1021/ct100030j
141 Koslowski A. ; Beck M. E. ; Thiel W. J. Comput. Chem. 2003, 24, 714.
doi: 10.1002/jcc.10210
142 Granucci G. ; Toniolo A. Chem. Phys. Lett. 2000, 325, 79.
doi: 10.1016/S0009-2614(00)00691-6
143 Comeau D. C. ; Bartlett R. J. Chem. Phys. Lett. 1993, 207, 414.
doi: 10.1016/0009-2614(93)89023-B
144 Stanton J. F. ; Bartlett R. J. J. Chem. Phys. 1993, 98, 7029.
doi: 10.1063/1.464746
145 Christiansen O. ; Koch H. ; J rgensen P. Chem. Phys. Lett. 1995, 243, 409.
doi: 10.1016/0009-2614(95)00841-Q
146 Trofimov A. ; Stelter G. ; Schirmer J. J. Chem. Phys. 1999, 111, 9982.
doi: 10.1063/1.480352
147 Dreuw A. ; Head-Gordon M. Chem. Rev. 2005, 105, 4009.
doi: 10.1021/cr0505627
148 Levine B. G. ; Ko C. ; Quenneville J. ; Martínez T. J. Mol. Phys. 2006, 104, 1039.
doi: 10.1080/00268970500417762
149 Shao Y. ; Head-Gordon M. ; Krylov A. I. J. Chem. Phys. 2003, 118, 4807.
doi: 10.1063/1.1545679
150 Li Z. ; Liu W. J. Chem. Phys. 2012, 136, 024107.
doi: 10.1063/1.3676736
151 Krylov A. I. Chem. Phys. Lett. 2001, 338, 375.
doi: 10.1016/S0009-2614(01)00287-1
152 Manohar P. U. ; Krylov A. I. J. Chem. Phys. 2008, 129, 194105.
doi: 10.1063/1.3013087
153 Casanova D. ; Head-Gordon M. Phys. Chem. Chem. Phys. 2009, 11, 9779.
doi: 10.1039/b911513g
154 Lefrancois D. ; Wormit M. ; Dreuw A. J. Chem. Phys. 2015, 143, 124107.
doi: 10.1063/1.4931653
155 Casanova D. J. Chem. Phys. 2012, 137, 084105.
doi: 10.1063/1.4747341
156 Yang Y. ; Shen L. ; Zhang D. ; Yang W. J. Phys. Chem. Lett. 2016, 7, 2407.
doi: 10.1021/acs.jpclett.6b00936
157 Shu Y. ; Parker K. A. ; Truhlar D. G. J. Phys. Chem. Lett. 2017, 8, 2107.
doi: 10.1021/acs.jpclett.7b00594
158 Widmalm G. ; Pastor R. W. J. Chem. Soc. Faraday Trans. 1992, 88, 1747.
doi: 10.1039/ft9928801747
159 Olson M. A. ; Chaudhury S. ; Lee M. S. J. Comput. Chem. 2011, 32, 3014.
doi: 10.1002/jcc.21883
160 Nelson T. ; Fernandez-Alberti S. ; Roitberg A. E. ; Tretiak S. Acc. Chem. Res. 2014, 47, 1155.
doi: 10.1021/ar400263p
161 Alfonso Hernandez L. ; Nelson T. ; Gelin M. F. ; Lupton J. M. ; Tretiak S. ; Fernandez-Alberti S. J. Phys. Chem. Lett. 2016, 7, 4936.
doi: 10.1021/acs.jpclett.6b02236
162 Fernandez-Alberti S. ; Kleiman V. D. ; Tretiak S. ; Roitberg A. E. J. Phys. Chem. Lett. 2010, 1, 2699.
doi: 10.1021/jz100794z
163 Soler M. A. ; Roitberg A. E. ; Nelson T. ; Tretiak S. ; Fernandez-Alberti S. J. Phys. Chem. A 2012, 116, 9802.
doi: 10.1021/jp301293e
164 Tomasi J. ; Mennucci B. ; Cammi R. Chem. Rev. 2005, 105, 2999.
doi: 10.1021/cr9904009
165 Eckert F. ; Klamt A. AIChE J. 2002, 48, 369.
doi: 10.1002/aic.690480220
166 Chernyak V. ; Mukamel S. J. Chem. Phys. 2000, 112, 3572.
doi: 10.1063/1.480511
167 Hu C. ; Hirai H. ; Sugino O. J. Chem. Phys. 2007, 127, 064103.
doi: 10.1063/1.2755665
168 Tavernelli I. ; Curchod B. F. ; Laktionov A. ; Rothlisberger U. J. Chem. Phys. 2010, 133, 194104.
doi: 10.1063/1.3503765
169 Ou Q. ; Fatehi S. ; Alguire E. ; Shao Y. ; Subotnik J. E. J. Chem. Phys. 2014, 141, 024114.
doi: 10.1063/1.4887256
170 Li Z. ; Liu W. J. Chem. Phys. 2014, 141, 014110.
doi: 10.1063/1.4885817
171 Yarkony D. R. Rev. Mod. Phys. 1996, 68, 985.
doi: 10.1103/RevModPhys.68.985
172 Yarkony D. R. Acc. Chem. Res. 1998, 31, 511.
doi: 10.1021/ar970113w
173 Lengsfield B. H. ; Yarkony D. R. Adv. Chem. Phys. 1992, 82, 1.
doi: 10.1002/9780470141403.Ch1
174 Domcke W. ; Yarkony D. R. Annu. Rev. Phys. Chem. 2012, 63, 325.
doi: 10.1146/annurev-physchem-032210-103522
175 Tavernelli I. ; Tapavicza E. ; Rothlisberger U. J. Mol. Struct.: THEOCHEM 2009, 914, 22.
doi: 10.1016/j.theochem.2009.04.020
176 Pittner J. ; Lischka H. ; Barbatti M. Chem. Phys. 2009, 356, 147.
doi: 10.1016/j.chemphys.2008.10.013
177 Barbatti M. ; Pittner J. ; Pederzoli M. ; Werner U. ; Mitri? R. ; Bona?i?-Kouteck V. ; Lischka H. Chem. Phys. 2010, 375, 26.
doi: 10.1016/j.chemphys.2010.07.014
178 Casida M. E. ; Huix-Rotllant M. Annu. Rev. Phys. Chem. 2012, 63, 287.
doi: 10.1146/annurev-physchem-032511-143803
179 Tavernelli I. ; Tapavicza E. ; Rothlisberger U. J. Chem. Phys. 2009, 130, 124107.
doi: 10.1063/1.3097192
180 Plasser F. ; Crespo-Otero R. ; Pederzoli M. ; Pittner J. ; Lischka H. ; Barbatti M. J. Chem. Theory Comput. 2014, 10, 1395.
doi: 10.1021/ct4011079
181 Werner U. ; Mitri? R. ; Suzuki T. ; Bona?i?-Kouteck V. Chem. Phys. 2008, 349, 319.
doi: 10.1016/j.chemphys.2008.02.061
182 Casida M. E. Time-Dependent Density Functional Response Theory for Molecules. In Recent Advances in Density Functional Methods Singapore: World Scientific, 1995, p. 155.
183 Kubar T. ; Elstner M. Phys. Chem. Chem. Phys. 2013, 15, 5794.
doi: 10.1039/c3cp44619k
184 Granucci G. ; Persico M. ; Toniolo A. J. Chem. Phys. 2001, 114, 10608.
doi: 10.1063/1.1376633
185 Mai S. ; Marquetand P. ; González L. Int. J. Quantum Chem 2015, 115, 1215.
doi: 10.1002/qua.24891
186 Granucci G. ; Persico M. J. Chem. Phys. 2007, 126, 134114.
doi: 10.1063/1.2715585
187 Granucci G. ; Persico M. ; Zoccante A. J. Chem. Phys. 2010, 133, 134111.
doi: 10.1063/1.3489004
188 Cheng S. C. ; Zhu C. ; Liang K. K. ; Lin S. H. ; Truhlar D. G. J. Chem. Phys. 2008, 129, 024112.
doi: 10.1063/1.2948395
189 Schwartz B. J. ; Bittner E. R. ; Prezhdo O. V. ; Rossky P. J. J. Chem. Phys. 1996, 104, 5942.
doi: 10.1063/1.471326
190 Bedard-Hearn M. J. ; Larsen R. E. ; Schwartz B. J. J. Chem. Phys. 2005, 123, 234106.
doi: 10.1063/1.2131056
191 Fang J. Y. ; Hammes-Schiffer S. J. Chem. Phys. 1997, 107, 8933.
doi: 10.1063/1.475185
192 Fang J. Y. ; Hammes-Schiffer S. J. Phys. Chem. A 1999, 103, 9399.
doi: 10.1021/Jp991602b
193 Neria E. ; Nitzan A. J. Chem. Phys. 1993, 99, 1109.
doi: 10.1063/1.465409
194 Shenvi N. ; Yang W. T. J. Chem. Phys. 2012, 137, 22A.
doi: 10.1063/1.4746407
195 Feng W. ; Xu L. T. ; Li X. Q. ; Fang W. H. Commun. Theor. Phys. 2013, 60, 303.
doi: 10.1088/0253-6102/60/3/08
196 Feng W. ; Xu L. T. ; Li X. Q. ; Fang W. H. ; Yan Y. J. AIP Adv. 2014, 4, 077131.
doi: 10.1063/1.4891821
197 Barbatti M. ; Lischka H. J. Am. Chem. Soc. 2008, 130, 6831.
doi: 10.1021/ja800589p
198
doi: 10.1063/1.4731649
199 Barbatti M. J. Am. Chem. Soc. 2014, 136, 10246.
doi: 10.1021/ja505387c
200 Lu Y. ; Lan Z. G. ; Thiel W. Angew. Chem. Int. Ed. 2011, 50, 6864.
doi: 10.1002/anie.201008146
201 Lu Y. ; Lan Z. G. ; Thiel W. J. Comput. Chem. 2012, 33, 1225.
doi: 10.1002/jcc.22952
202 Barbatti M. ; Aquino A. J. ; Szymczak J. J. ; Nachtigallová D. ; Lischka H. Phys. Chem. Chem. Phys. 2011, 13, 6145.
doi: 10.1039/c0cp01327g
203 Groenhof G. ; Schafer L. V. ; Boggio-Pasqua M. ; Goette M. ; Grubmuller H. ; Robb M. A. J. Am. Chem. Soc. 2007, 129, 6812.
doi: 10.1021/ja069176c
204 Rauer C. ; Nogueira J. J. ; Marquetand P. ; González L. J. Am. Chem. Soc. 2016, 138, 15911.
doi: 10.1021/jacs.6b06701
205 Langer H. ; Doltsinis N. L. ; Marx D. ChemPhysChem 2005, 6, 1734.
doi: 10.1002/cphc.200400578
206 Langer H. ; Doltsinis N. L. Phys. Chem. Chem. Phys. 2004, 6, 2742.
doi: 10.1039/b315566h
207 Mai S. ; Richter M. ; Marquetand P. ; González L. Chem. Phys 2017, 482, 9.
doi: 10.1016/j.chemphys.2016.10.003
208 Barbatti M. ; Borin A. C. ; Ullrich S. PhotoinducedPhenom. Nucleic Acids I: Nucleobases Gas Phase Sol. 2015, 355, 1.
doi: 10.1007/128_2014_569
209 Barbatti M. ; Aquino A. J. A. ; Szymczak J. J. ; Nachtigallova D. ; Hobza P. ; Lischka H. Proc. Natl. Acad. Sci. USA 2010, 107, 21453.
doi: 10.1073/pnas.1014982107
210 Lan Z. G. ; Fabiano E. ; Thiel W. J. Phys. Chem. B 2009, 113, 3548.
doi: 10.1021/jp809085h
211 Ullrich S. ; Schultz T. ; Zgierski M. Z. ; Stolow A. Phys. Chem. Chem. Phys. 2004, 6, 2796.
doi: 10.1039/B316324e
212 Ullrich S. ; Schultz T. ; Zgierski M. Z. ; Stolow A. J. Am. Chem. Soc. 2004, 126, 2262.
doi: 10.1021/ja030532q
213 Canuel C. ; Mons M. ; Piuzzi F. ; Tardivel B. ; Dimicoli I. ; Elhanine M. J. Chem. Phys. 2005, 122, 074316.
doi: 10.1063/1.1850469
214 Samoylova E. ; Lippert H. ; Ullrich S. ; Hertel I. V. ; Radloff W. ; Schultz T. J. Am. Chem. Soc. 2005, 127, 1782.
doi: 10.1021/ja044369q
215 Ritze H. H. ; Lippert H. ; Samoylova E. ; Smith V. R. ; Hertel I. V. ; Radloff W. ; Schultz T. J. Chem. Phys. 2005, 122, 224320.
doi: 10.1063/1.1914763
216 Satzger H. ; Townsend D. ; Zgierski M. Z. ; Patchkovskii S. ; Ullrich S. ; Stolow A. Proc. Natl. Acad. Sci. USA 2006, 103, 10196.
doi: 10.1073/pnas.0602663103
Fabiano E. ; Keal T. W. ; Thiel W. Chem. Phys. 2008, 349, 334.
doi: 10.1016/j.chemphys.2008.01.044
218 Gozem S. ; Luk H. L. ; Schapiro I. ; Olivucci M. Chem. Rev. 2017, 117, 13502.
doi: 10.1021/acs.chemrev.7b00177
219 Barbatti M. ; Ruckenbauer M. ; Lischka H. J. Chem. Phys. 2005, 122, 174307.
doi: 10.1063/1.1888573
220 Ciminelli C. ; Granucci G. ; Persico M. Chem. -Eur. J. 2004, 10, 2327.
doi: 10.1002/chem.200305415
221 Pederzoli M. ; Pittner J. ; Barbatti M. ; Lischka H. J. Phys. Chem. A 2011, 115, 11136.
doi: 10.1021/jp2013094
222 Weingart O. ; Lan Z. ; Koslowski A. ; Thiel W. J. Phys. Chem. Lett. 2011, 2, 1506.
doi: 10.1021/jz200474g
223 Wang Y. ; Liu X. ; Cui G. ; Fang W. ; Thiel W. Angew. Chem. Int. Ed. 2016, 55, 14009.
doi: 10.1002/anie.201607373
224 Hu D. ; Huang J. ; Xie Y. ; Yue L. ; Zhuang X. ; Lan Z. Chem. Phys. 2015, 463, 95.
doi: 10.1016/j.chemphys.2015.10.003
225 Cusati T. ; Granucci G. ; Persico M. J. Am. Chem. Soc. 2011, 133, 5109.
doi: 10.1021/ja1113529
226 Bockmann M. ; Doltsinis N. L. ; Marx D. J. Phys. Chem. A 2010, 114, 745.
doi: 10.1021/jp910103b
227 Xia S. H. ; Cui G. L. ; Fang W. H. ; Thiel W. Angew. Chem. Int. Ed. 2016, 55, 2067.
doi: 10.1002/anie.201509622
228 Paulson J. A. ; Krost D. A. ; Mcpherson G. L. ; Rogers R. D. ; Atwood J. L. Inorg. Chem. 1980, 19, 2519.
doi: 10.1021/Ic50211a007
229 Cunningham C. T. ; Moore J. J. ; Cunningham K. L. H. ; Fanwick P. E. ; McMillin D. R. Inorg. Chem. 2000, 39, 3638.
doi: 10.1021/Ic000082s
230 Scaltrito D. V. ; Thompson D. W. ; O'Callaghan J. A. ; Meyer G. J. Coord. Chem. Rev. 2000, 208, 243.
doi: 10.1016/S0010-8545(00)00309-X
231 Mara M. W. ; Fransted K. A. ; Chen L. X. Coord. Chem. Rev. 2015, 282, 2.
doi: 10.1016/j.ccr.2014.06.013
232 Holder E. ; Langeveld B. M. W. ; Schubert U. S. Adv. Mater. 2005, 17, 1109.
doi: 10.1002/adma.200400284
233 Kumar B. ; Llorente M. ; Froehlich J. ; Dang T. ; Sathrum A. ; Kubiak C. P. Annu. Rev. Phys. Chem. 2012, 63, 541.
doi: 10.1146/annurev-physchem-032511-143759
234 Du L. ; Lan Z. Phys. Chem. Chem. Phys. 2016, 18, 7641.
doi: 10.1039/c5cp06861d
235 Iwamura M. ; Takeuchi S. ; Tahara T. J. Am. Chem. Soc. 2007, 129, 5248.
doi: 10.1021/ja069300s
236 Shaw G. B. ; Grant C. D. ; Shirota H. ; Castner E. W. ; Meyer G. J. ; Chen L. X. J. Am. Chem. Soc. 2007, 129, 2147.
doi: 10.1021/ja067271f
237 Iwamura M. ; Watanabe H. ; Ishii K. ; Takeuchi S. ; Tahara T. J. Am. Chem. Soc. 2011, 133, 7728.
doi: 10.1021/ja108645x
238 Capano G. ; Penfold T. J. ; Chergui M. ; Tavernelli I. Phys. Chem. Chem. Phys. 2017, 19, 19590.
doi: 10.1039/c7cp00436b
239 Shenai P. M. ; Fernandez-Alberti S. ; Bricker W. P. ; Tretiak S. ; Zhao Y. J. Phys. Chem. B 2015, 120, 49.
doi: 10.1021/acs.jpcb.5b09548
240 Kilina S. ; Kilin D. ; Tretiak S. Chem. Rev. 2015, 115, 5929.
doi: 10.1021/acs.chemrev.5b00012
241 Huang J. ; Du L. K. ; Hu D. P. ; Lan Z. G. J. Comput. Chem. 2015, 36, 151.
doi: 10.1002/jcc.23778
242 Huang J. ; Du L. K. ; Hu D. P. ; Lan Z. G. J. Comput. Chem. 2015, 36, 2208.
doi: 10.1002/jcc.23778
243 Gao X. ; Peng Q. ; Niu Y. L. ; Wang D. ; Shuai Z. G. Phys. Chem. Chem. Phys. 2012, 14, 14207.
doi: 10.1039/c2cp40347a
244 Fazzi D. ; Barbatti M. ; Thiel W. Phys. Chem. Chem. Phys. 2015, 17, 7787.
doi: 10.1039/c5cp00019j
245 Fazzi D. ; Barbatti M. ; Thiel W. J. Am. Chem. Soc. 2016, 138, 4502.
doi: 10.1021/jacs.5b13210
246 Huang J. ; Du L. K. ; Wang J. ; Lan Z. G. J. Phys. Chem. C 2015, 119, 7578.
doi: 10.1021/jp512496z
247 Wang J. ; Huang J. ; Du L. K. ; Lan Z. G. J. Phys. Chem. A 2015, 119, 6937.
doi: 10.1021/acs.jpca.5b00354
248 Long R. ; Prezhdo O. V. ; Fang W. H. WIREs Comput. Mol. Sci. 2017, 7, e1305.
doi: 10.1002/wcms.1305
249 Akimov A. V. ; Neukirch A. J. ; Prezhdo O. V. Chem. Rev. 2013, 113, 4496.
doi: 10.1021/cr3004899
250 Prezhdo O. V. ; Duncant W. R. ; Prezhdo V. V. Acc. Chem. Res. 2008, 41, 339.
doi: 10.1021/ar700122b
251 Craig C. F. ; Duncan W. R. ; Prezhdo O. V. Phys. Rev. Lett. 2005, 95, 163001.
doi: 10.1103/PhysRevLett.95.163001
252 Zheng Q. J. ; Saidi W. A. ; Xie Y. ; Lan Z. G. ; Prezhdo O. V. ; Petek H. ; Zhao J. Nano Lett. 2017, 17, 6435.
doi: 10.1021/acs.nanolett.7b03429
253 Prezhdo O. V. ; Duncan W. R. ; Prezhdo V. V. Prog. Surf. Sci. 2009, 84, 30.
doi: 10.1016/j.progsurf.2008.10.005
254 Neukirch A. J. ; Hyeon-Deuk K. ; Prezhdo O. V. Coord. Chem. Rev. 2014, 263, 161.
doi: 10.1016/j.ccr.2013.08.035
255 Prezhdo O. V. Acc. Chem. Res. 2009, 42, 2005.
doi: 10.1021/ar900157s
256 Frank I. ; Damianos K. J. Chem. Phys. 2007, 126, 125105.
doi: 10.1063/1.2711188
257 Crespo-Otero R. ; Barbatti M. J. Chem. Phys. 2011, 134, 164305.
doi: 10.1063/1.3582914
258 Chang X. P. ; Cui G. L. ; Fang W. H. ; Thiel W. ChemPhysChem 2015, 16, 933.
doi: 10.1002/cphc.201402897
259 Xia S. H. ; Xie B. B. ; Fang Q. ; Cui G. L. ; Thiel W. Phys. Chem. Chem. Phys. 2015, 17, 9687.
doi: 10.1039/c5cp00101c
260 Ding B. W. ; Liu Y. J. J. Am. Chem. Soc. 2017, 139, 1106.
doi: 10.1021/jacs.6b09119
261 Yue L. ; Lan Z. G. ; Liu Y. J. J. Phys. Chem. Lett. 2015, 6, 540.
doi: 10.1021/jz502305g
262 Garcia-Iriepa C. ; Gueye M. ; Leonard J. ; Martinez-Lopez D. ; Campos P. J. ; Frutos L. M. ; Sampedro D. ; Marazzi M. Phys. Chem. Chem. Phys. 2016, 18, 6742.
doi: 10.1039/c5cp07599h
263 Mignolet B. ; Curchod B. F. ; Martínez T. J. Angew. Chem. 2016, 128, 15217.
doi: 10.1002/anie.201607633
264 Mitric R. ; Werner U. ; Wohlgemuth M. ; Seifert G. ; Bonac?ic?-Koutecky? V. J. Phys. Chem. A 2009, 113, 12700.
doi: 10.1021/jp905600w
265 Stojanovic L. ; Aziz S. G. ; Hilal R. H. ; Plasser F. ; Niehaus T. A. ; Barbatti M. J. Chem. Theory Comput. 2017, 13, 5846.
doi: 10.1021/acs.jctc.7b01000
266 Park J. W. ; Shiozaki T. J. Chem. Theory Comput. 2017, 13, 3676.
doi: 10.1021/acs.jctc.7b00559
267 Kranz J. J. ; Elstner M. J. Chem. Theory Comput. 2016, 12, 4209.
doi: 10.1021/acs.jctc.6b00235
268 Akimov A. V. J. Chem. Theory Comput. 2016, 12, 5719.
doi: 10.1021/acs.jctc.6b00955
269 Sisto A. ; Stross C. ; van der Kamp M. W. ; O'Connor M. ; McIntosh-Smith S. ; Johnson G. T. ; Hohenstein E. G. ; Manby F. R. ; Glowacki D. R. ; Martínez T. J. Phys. Chem. Chem. Phys. 2017, 19, 14924.
doi: 10.1039/c7cp00492c
270 Cui G. ; Thiel W. J. Chem. Phys. 2014, 141, 124101.
doi: 10.1063/1.4894849
271 Li X. ; Xie Y. ; Hu D. ; Lan Z. J. Chem. Theory Comput. 2017, 13, 4611.
doi: 10.1021/acs.jctc.7b00394
272 Atkins A. J. ; González L. J. Phys. Chem. Lett. 2017, 8, 3840.
doi: 10.1021/acs.jpclett.7b01479
273 Kowalewski M. ; Fingerhut B. P. ; Dorfman K. E. ; Bennett K. ; Mukamel S. Chem. Rev. 2017, 117, 12165.
doi: 10.1021/acs.chemrev.7b00081
274 Chen L. X. ; Zhang X. ; Shelby M. L. Chem. Sci. 2014, 5, 4136.
doi: 10.1039/c4sc01333f
275 McFarland B. K. ; Farrell J. P. ; Miyabe S. ; Tarantelli F. ; Aguilar A. ; Berrah N. ; Bostedt C. ; Bozek J. D. ; Bucksbaum P. H. ; Castagna J. C. ; et al Nat. Commun 2014, 5, 4235.
doi: 10.1038/ncomms5235
276 Zhu C. ; Kamisaka H. ; Nakamura H. J. Chem. Phys. 2001, 115, 11036.
doi: 10.1063/1.1421070
277 Liu X. ; Chang X. ; Xia S. ; Cui G. ; Thiel W. J. Chem. Theory Comput. 2016, 12, 753.
doi: 10.1021/acs.jctc.5b00894
278 Zhao L. ; Zhou P. ; Zhao G. RSC Adv. 2016, 6, 64323.
doi: 10.1039/c6ra11416d
279 Zhao L. ; Zhou P. ; Zhao G. J. Chem. Phys. 2016, 145, 044316.
doi: 10.1063/1.4959131
280 Zhao L. ; Zhou P. ; Li B. ; Gao A. ; Han K. J. Chem. Phys. 2014, 141, 235101.
doi: 10.1063/1.4903241
[1] 龙金友,刘志明,邱学军,张冰. 2-甲基呋喃分子激发态超快非绝热动力学[J]. 物理化学学报, 2017, 33(3): 506-512.
[2] 袁帅, 马静, 张文英, 舒坤贤, 豆育升. 5-甲基胞嘧啶及胞嘧啶无辐射失活的半经典动力学模拟和CASSCF计算[J]. 物理化学学报, 2012, 28(12): 2803-2808.
[3] 郭晓楠, 杜蕊, 赵彦英, 裴克梅, 王惠刚, 郑旭明. 2-硫代嘧啶酮和2-硫代吡啶酮在B-吸收带中的动态结构[J]. 物理化学学报, 2012, 28(07): 1570-1578.
[4] 豆育升, 李伟, 袁帅, 张文英, 李安阳, 舒坤贤, 唐红. 堆积的胸腺嘧啶体系光物理失活的动力学模拟[J]. 物理化学学报, 2011, 27(11): 2559-2564.
[5] 袁帅, 张文英, 李安阳, 朱义敏, 豆育升. 堆积的腺嘌呤体系新失活通道的动力学模拟[J]. 物理化学学报, 2011, 27(04): 825-830.
[6] 崔凤超, 于洪波, 王钦, 叶宛丽, 刘靖尧. CH3OCF2CF2OCH3+Cl的反应机理及动力学性质[J]. 物理化学学报, 2011, 27(02): 337-342.
[7] 王永霞, 段雪梅, 王钦, 刘靖尧. 甲硫醇和氢原子反应的从头算直接动力学[J]. 物理化学学报, 2010, 26(01): 183-187.
[8] 刘朋军;杜奇石;常鹰飞;荣顺. HNCS与CH2(X2Π)反应微观动力学的理论研究[J]. 物理化学学报, 2005, 21(12): 1347-1351.
[9] 韩克利. 非绝热量子散射动力学[J]. 物理化学学报, 2004, 20(08S): 1032-1036.