物理化学学报 >> 2018, Vol. 34 >> Issue (9): 1029-1047.doi: 10.3866/PKU.WHXB201801122

所属专题: 石墨炔

综述 上一篇    下一篇

石墨炔在电化学储能器件中的应用

神祥艳1,2,何建江1,王宁1,黄长水1,*()   

  1. 1 中国科学院青岛生物能源与过程研究所,山东 青岛 266101
    2 中国科学院大学,北京 100049
  • 收稿日期:2017-12-06 发布日期:2018-04-09
  • 通讯作者: 黄长水 E-mail:huangcs@qibebt.ac.cn
  • 作者简介:黄长水,中国科学院青岛生物能源与过程研究所研究员,中国科学院“百人计划”。研究方向是基于二维平面碳的光、电功能性分子材料制备,及其在能源存储和转化方向的应用和相关器件设计
  • 基金资助:
    中国科学院“百人计划”项目(QYZDB-SSW-JSC052);山东省自然科学基金委杰出青年基金(JQ201610)

Graphdiyne for Electrochemical Energy Storage Devices

Xiangyan SHEN1,2,Jianjiang HE1,Ning WANG1,Changshui HUANG1,*()   

  1. 1 Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong Province, P. R. China
    2 University of Chinese Academy of Sciences, Beijing 100190, P. R. China
  • Received:2017-12-06 Published:2018-04-09
  • Contact: Changshui HUANG E-mail:huangcs@qibebt.ac.cn
  • Supported by:
    the Hundred Talents Program and Frontier Science Research Project of the Chinese Academy of Sciences(QYZDB-SSW-JSC052);the Natural Science Foundation of Shandong Province for Distinguished Young Scholars, China(JQ201610)

摘要:

当今社会,电化学储能器件在人类的社会活动中变得越来越重要。电极材料作为电化学储能器件的核心部分,一直是人们研究的焦点。石墨炔是一种新型的二维平面结构的全碳材料,它宽的层间距、大的比表面积、独特的三维孔隙结构和好的导电性使其在能源存储器件电极材料应用中具有巨大的潜力。基于石墨炔温和的制备方法与独特的结构特征,本文详细介绍了近年来石墨炔在储能方面的理论分析和实验进展。通过研究锂/钠在单层、多层石墨炔上的迁移率和存储,理论分析石墨炔基电池具有很好的储锂储钠性能。实验方面,石墨炔作为电极材料在储钠储锂方面的容量与理论值相近。此外石墨炔作为电极材料成功应用于超级电容器和金属-硫电池,并表现出了优异的容量存储性能。石墨炔纳米形貌的调控、石墨炔的热处理,以及异原子的掺杂等均可以有效地提高石墨炔在这些储能器件中的性能。

关键词: 石墨炔, 电化学储能器件, 储锂, 储钠, 金属-硫电池, 超级电容器

Abstract:

Electrochemicalenergy storage devices are becoming increasingly important in modern societyfor efficient energy storage. The use of these devices is mainly dependent onthe electrode materials. As a newly discovered carbon allotrope, graphdiyne(GDY) is a two-dimensional full-carbon material. Its wide interlayer distance(0.365 nm), large specific surface area, special three-dimensional porousstructure (18-C hexagon pores), and high conductivity make it a potentialelectrode material in energy storage devices. In this paper, based on thefacile synthesis method and the unique porous structure of GDY, theapplications of GDY in energy storage devices have been discussed in detailfrom the aspects of both theoretical predictions and recent experimentaldevelopments. The Li/Na migration and storage in mono-layered and bulk GDYindicate that GDY-based batteries have excellent theoretical Li/Na storagecapacity. The maximal Li storage capacity in mono-layered GDY is LiC3(744 mAh∙g-1). The experimental Li storage capacity of GDY issimilar to theoretical predictions. The experimental Li storage capacity of athick GDY film is close to that of mono-layered GDY' (744 mAh∙g-1).A thin GDY film with double-side storage model has two-times the Li storagecapacity (1480 mAh∙g-1) of mono-layered GDY. Powder GDY has lower Listorage capacity than GDY film. The maximal Na storage capacity in GDYcorresponds to NaC5.14 (316 mAh∙g-1), and mono-layeredGDY possesses higher theoretical Na storage capacity (NaC2.57). Theexperimental Na storage capacity (261 mAh∙g-1) is similar to itstheoretical value. Besides, GDY as electrode material, applied in metal-sulfurbatteries, presents excellent electrochemical performance (in Li-S battery: 0.1C, 949.2 mAh∙g-1; in Mg-S battery: 50 mA∙g-1, 458.9 mAh∙g-1).This ingenious design presents a new way for the preparation of carbon-loadedsulfur. GDY electrode material is also successfully used in supercapacitors, including the traditional supercapacitor, Li-ion capacitors, and Na-ioncapacitors. The traditional supercapacitor with GDY as the electrode material showsgood double layer capacitance and pseudo-capacitance. Both Li-ion capacitor(100.3 W∙kg-1, 110.7 Wh∙kg-1) and Na-ion capacitor (300W∙kg-1, 182.3 Wh∙kg-1) possess high power and energydensities. Moreover, the effects of synthesis of GDY nanostructure, heattreatment of GDY, and atom-doping in GDY on the performance of electrochemicalenergy storage will be introduced and discussed. The results indicate that GDYhas great potential for application in different energy storage devices as anefficient electrode material.

Key words: Graphdiyne, Electrochemical energy storage devices, Li storage, Na storage, Metal-sulphur battery, Supercapacitor

MSC2000: 

  • O646