Please wait a minute...
物理化学学报  2018, Vol. 34 Issue (10): 1116-1123    DOI: 10.3866/PKU.WHXB201801151
所属专题: 材料科学的分子模拟
论文     
采用优化的DFTB参数对铜(111)表面碳二聚化的分子动力学研究
殷迪,邱宗仰,李湃,李震宇*()
A Molecular Dynamics Study of Carbon Dimerization on Cu(111) Surface with Optimized DFTB Parameters
Di YIN,Zongyang QIU,Pai LI,Zhenyu LI*()
 全文: PDF(1262 KB)   HTML 输出: BibTeX | EndNote (RIS) |
摘要:

针对铜表面化学反应,我们发展了一套铜-碳体系的密度泛函紧束缚(DFTB)参数。测试结果表明这套参数可以很好的描述吸附铜或碳原子前后铜表面的几何结构和能量。基于这套参数,我们对Cu(111)表面的碳二聚化过程进行了分子模拟研究。即使在高温下,直接的分子动力学模拟也很难观察到碳二聚体的形成。这是因为高温下铜表面显著的结构弛豫一定程度上阻止了二聚化。为了研究高温下铜表面碳二聚化的机理,我们进行了赝动力学模拟。发现在二聚化的过程中,碳原子形成C-Cu-C桥状结构以后,会绕中间Cu原子转动,最后形成碳二聚体。1300 K下碳二聚化的自由能垒约0.9 eV。

关键词: 铜表面碳二聚体DFTB分子模拟    
Abstract:

Cu has been widely used as a substrate material for graphene growth. To understand the atomistic mechanism of growth, an efficient and accurate method for describing Cu-C interactions is necessary, which is the prerequisite of any possible large-scale molecular simulation studies. The semi-empirical density-functional tight-binding (DFTB) method has a solid basis from the density functional theory (DFT) and is believed to be a good tool for achieving a balance between efficiency and accuracy. However, existing DFTB parameters cannot provide a reasonable description of the Cu surface structure. At the same time, DFTB parameters for Cu-C interactions are not available. Therefore, it is highly desirable to develop a set of DFTB parameters that can describe the Cu-C system, especially for surface reactions. In this study, a parametrization for Cu-C systems within the self-consistent-charge DFTB (SCC-DFTB) framework is performed. One-center parameters, including on-site energy, Hubbard, and spin parameters, are obtained from DFT calculations on free atoms. Two-center parameters can be calculated based on atomic wavefunctions. The remaining repulsive potential is obtained as the best compromise to describe different kinds of systems. Test calculations on Cu surfaces and Cu-or C atom-adsorbed Cu surfaces indicate that the obtained parameters can generate reasonable geometric structures and energetics. Based on this parameter set, carbon dimerization on the Cu(111) surface has been investigated via molecular dynamics simulations. Since they are the feeding species for graphene growth, it is important to understand how carbon dimers are formed on the Cu surface. It is difficult to observe carbon dimerization in brute-force MD simulations even at high temperatures, because of the surface structure distortion. To study the dimerization mechanism, metadynamics simulations are performed. Our simulations suggest that carbon atoms will rotate around the bridging Cu atom after a bridging metal structure is formed, which eventually leads to the dimer formation. The free energy barrier for dimerization at 1300 K is about 0.9 eV. The results presented here provide useful insights for understanding graphene growth.

Key words: Copper surface    Carbon dimer    DFTB    Molecular simulation
收稿日期: 2017-12-18 出版日期: 2018-01-15
中图分类号:  O643  
基金资助: 国家自然科学基金(21573201);科学技术部(2016YFA0200604);国家自然科学基金-广东联合基金(第二期)超级计算科学应用研究专项(U1501501)
通讯作者: 李震宇     E-mail: zyli@mail.ustc.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
殷迪
邱宗仰
李湃
李震宇

引用本文:

殷迪,邱宗仰,李湃,李震宇. 采用优化的DFTB参数对铜(111)表面碳二聚化的分子动力学研究[J]. 物理化学学报, 2018, 34(10): 1116-1123.

Di YIN,Zongyang QIU,Pai LI,Zhenyu LI. A Molecular Dynamics Study of Carbon Dimerization on Cu(111) Surface with Optimized DFTB Parameters. Acta Physico-Chimica Sinca, 2018, 34(10): 1116-1123.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201801151        http://www.whxb.pku.edu.cn/CN/Y2018/V34/I10/1116

Shell d p s
copper on-site ?5.5039 ?0.7921 ?4.6812
Hubbard 13.0385 3.6726 6.9281
carbon on-site 0 ?5.4221 ?13.6241
Hubbard 0 10.2432 11.0442
Table 1  On-site energies and Hubbard parameters for Cu and C.
Shell s p d
copper s ?0.4082 ?0.2095 ?0.0735
p ?0.2830 ?0.2830 ?0.0218
d ?0.0707 ?0.0109 ?0.4572
carbon s ?0.8055 ?0.6476
P ?0.6776 ?0.5796
Table 2  Spin constants for Cu and C.
Fig 1  Average energy deviation in band structure with respect to r0 in the confinement potential.
Fig 2  Band structures for fcc Cu (upper plate) and graphene (below plate). DFT results are in black, matsci-0-3 in red, our parameterization in blue.
Fig 3  Energy with respect to lattice parameter of fcc Cu. Black curve is DFT total energy while blue curve is DFTB band structure energy.
Fig 4  Different Cu-Cu repulsive curves obtained from different configuration sets. Black curve for the slab model with one Cu atom adsorbed at top site, green curve for Cu atom adsorbed at fcc hollow site, blue curve for fcc bulks, and red curve for dimers.
Bond length (nm) Adsorption energy (eV)
DFTB DFT DFTB DFT
Fcc hollow site 0.242 0.240 3.25 2.62
Hcp hollow site 0.242 0.240 3.23 2.62
Bridge site 0.232 0.234 3.09 2.58
Top site 0.221 0.222 2.45 2.14
Table 3  Properties of Cu adatom on Cu(111) surface.
Bond length (nm) Adsorption energy (eV)
DFTB DFT DFTB DFT
Hollow site 0.248 0.243 3.85 2.86
Bridge site 0.230 0.234 3.15 2.31
Top site 0.220 0.223 2.48 1.93
Table 4  Properties of Cu adatom on Cu(100) surface.
Bond length (nm) Adsorption energy (eV)
DFTB DFT DFTB DFT
Fcc hollow site 0.199 0.185 4.49 4.88
Hcp hollow site 0.199 0.185 4.41 4.82
Bridge site 0.193 0.182 4.30 4.83
Top site 0.166 0.175 3.31 2.91
Table 5  Properties of C adatom on Cu(111) surface.
Bond length (nm) Adsorption energy (eV)
DFTB DFT DFTB DFT
Hollow site 0.211 0.191 5.01 6.05
Bridge site 0.188 0.180 4.43 4.23
Top site 0.166 0.174 3.42 2.92
Table 6  Properties of C adatom on Cu(100) surface.
DFTB DFT
C1 4.49 4.88
C2 6.16 6.46
C3 6.08 6.40
C6 6.14 6.44
Graphene 7.63 7.88
Table 7  Adsorption energy per atom for C clusters on Cu(111) surface.
Fig 5  A snapshot of a 30-ps MD at 1000 K with two C atoms on Cu(111) surface.
Fig 6  Snapshots of the metadynamics simulation trajectory in which a dimer forms. C atoms are in silver and Cu atoms are in blue and yellow.
Fig 7  Potential of mean force for carbon dimerization on copper substrate.
1 Tetlow H. ; de Boer J. P. ; Ford I. ; Vvedensky D. ; Coraux J. ; Kantorovich L. Phys. Rep. 2014, 542, 195.
doi: 10.1016/j.physrep.2014.03.003
2 Wu P. ; Zhang W. ; Li Z. ; Yang J. Small 2014, 10, 2136.
doi: 10.1002/smll.201303680
3 Wu P. ; Zhang Y. ; Cui P. ; Li Z. Y. ; Yang J. L. ; Zhang Z. Y. Phys. Rev. Lett. 2015, 114, 216102.
doi: 10.1103/PhysRevLett.114.216102
4 Li P. ; Li Z. ; Yang J. J. Phys. Chem. C 2017, 121, 25949.
doi: 10.1021/acs.jpcc.7b09622
5 Wu P. ; Zhang W. ; Li Z. ; Yang J. ; Hou J. G. J. Chem. Phys. 2010, 133, 071101.
doi: 10.1063/1.3473045
6 Li X. ; Cai W. ; An J. ; Kim S. ; Nah J. ; Yang D. ; Piner R. ; Velamakanni A. ; Jung I. ; Tutuc E. Science 2009, 324, 1312.
doi: 10.1126/science.1171245
7 Henkelman G. ; Uberuaga B. P. ; Jónsson H. J. Chem. Phys. 2000, 113, 9901.
doi: 10.1063/1.1329672
8 Elstner M. ; Porezag D. ; Jungnickel G. ; Elsner J. ; Haugk M. ; Frauenheim T. ; Suhai S. ; Seifert G. Phys. Rev. B 1998, 58, 7260.
doi: 10.1103/PhysRevB.58.7260
9 Frauenheim T. ; Seifert G. ; Elstner M. ; Hajnal Z. ; Jungnickel G. ; Porezag D. ; Suhai S. ; Scholz R. Phys. Stat. Sol. (b) 2000, 217, 41.
doi: 10.1002/(SICI)1521-3951(200001)217:1<41::AID-PSSB41>3.0.CO;2-V
10 Porezag D. ; Frauenheim T. ; Kohler T. ; Seifert G. ; Kaschner R. Phys. Rev. B 1995, 51, 12947.
doi: 10.1103/PhysRevB.51.12947
11 Elstner M. ; Frauenheim T. ; Kaxiras E. ; Seifert G. ; Suhai S. Phys. Stat. Sol. (b) 2000, 217, 357.
doi: 10.1002/(SICI)1521-3951(200001)217:1<357::AID-PSSB357>3.0.CO;2-J
12 Elstner M. Theor. Chem. Acc. 2006, 116, 316.
doi: 10.1007/s00214-005-0066-0
13 Page A. J. ; Ohta Y. ; Irle S. ; Morokuma K. Acc. Chem. Res. 2010, 43, 1375.
doi: 10.1021/ar100064g
14 Wang Y. ; Page A. J. ; Nishimoto Y. ; Qian H. -J. ; Morokuma K. ; Irle S. J. Am. Chem. Soc. 2011, 133, 18837.
doi: 10.1021/ja2064654
15 Li H. -B. ; Page A. J. ; Wang Y. ; Irle S. ; Morokuma K. Chem. Comm. 2012, 48, 7937.
doi: 10.1039/C2CC32995F
16 Wahiduzzaman M. ; Oliveira A. F. ; Philipsen P. ; Zhechkov L. ; van Lenthe E. ; Witek H. A. ; Heine T. J. Chem. Theory Compt. 2013, 9, 4006.
doi: 10.1021/Ct4004959
17 Oliveira A. F. ; Philipsen P. ; Heine T. J. Chem. Theory Compt. 2015, 11, 5209.
doi: 10.1021/acs.jctc.5b00702
18 Slater-Koster files containing atomic parameters used in DFTB calculations. http://www.dftb.org/parameters/ (accessed Dec 1, 2017)
19 Frenzel J. ; Oliveira A. F. ; Duarte H. A. ; Heine T. ; Seifert G. Z. Anorg. Allg. Chem. 2005, 631, 1267.
doi: 10.1002/zaac.200500051
20 Guimaraes L. ; Enyashin A. N. ; Frenzel J. ; Heine T. ; Duarte H. A. ; Seifert G. ACS Nano 2007, 1, 362.
doi: 10.1021/nn700184k
21 Koskinen P. ; Makinen V. Comput. Mater. Sci. 2009, 47, 237.
doi: 10.1016/j.commatsci.2009.07.013
22 Slater J. C. ; Koster G. F. Phys. Rev. 1954, 94, 1498.
doi: 10.1103/PhysRev.94.1498
23 Gaus M. ; Cui Q. A. ; Elstner M. J. Chem. Theory Compt. 2011, 7, 931.
doi: 10.1021/Ct100684s
24 Grundk tter-Stock B. ; Bezugly V. ; Kunstmann J. ; Cuniberti G. ; Frauenheim T. ; Niehaus T. A. J. Chem. Theory Compt. 2012, 8, 1153.
doi: 10.1021/ct200722n
25 Gaus M. ; Chou C. -P. ; Witek H. ; Elstner M. J. Phys. Chem. A 2009, 113, 11866.
doi: 10.1021/jp902973m
26 Bodrog Z. ; Aradi B. ; Frauenheim T. J. Chem. Theory Compt. 2011, 7, 2654.
doi: 10.1021/ct200327s
27 José M. S. ; Emilio A. ; Julian D. G. ; Alberto G. ; Javier J. ; Pablo O. ; Daniel S. -P. J. Phys.: Condens. Matter 2002, 14, 2745.
doi: 10.1088/0953-8984/14/11/302
28 Thomas F. ; Gotthard S. ; Marcus E. ; Thomas N. ; Christof K. ; Marc A. ; Michael S. ; Zoltán H. ; Aldo Di, C. ; Di C. ; Sándor S. J. Phys.: Condens. Matter 2002, 14, 3015.
doi: 10.1088/0953-8984/14/11/313
29 Aradi B. ; Hourahine B. ; Frauenheim T. J. Phys. Chem. A 2007, 111, 5678.
doi: 10.1021/jp070186p
30 Kresse G. ; Furthmuller J. Comput. Mater. Sci. 1996, 6, 15.
doi: 10.1016/0927-0256(96)00008-0
31 Kresse G. ; Furthmuller J. Phys. Rev. B 1996, 54, 11169.
doi: 10.1103/PhysRevB.54.11169
32 Perdew J. P. ; Burke K. ; Ernzerhof M. Phys. Rev. Lett. 1996, 77, 3865.
doi: 10.1103/PhysRevLett.77.3865
33 Knaup J. M. ; Hourahine B. ; Frauenheim T. J. Phys. Chem. A 2007, 111, 5637.
doi: 10.1021/jp0688097
34 Burdick G. A. Phys. Rev. 1963, 129, 138.
doi: 10.1103/PhysRev.129.138
35 Shin H. ; Kang S. ; Koo J. ; Lee H. ; Kim J. ; Kwon Y. J. Chem. Phys. 2014, 140, 114702.
doi: 10.1063/1.4867544
36 Van Wesep R. G. ; Chen H. ; Zhu W. ; Zhang Z. J. Chem. Phys. 2011, 134, 171105.
doi: 10.1063/1.3587239
37 Laio A. ; Parrinello M. Proc. Natl. Acad. Sci. USA 2002, 99, 12562.
doi: 10.1073/pnas.202427399
[1] 吴选军,李磊,彭亮,王叶彤,蔡卫权. 嵌入配位不饱和金属位对多孔芳香骨架材料储氢性能的影响[J]. 物理化学学报, 2018, 34(3): 286-295.
[2] 李爱静,谢炜,王明,徐四川. 多巴胺在其第三受体蛋白结构中的分子通道上传输动力学[J]. 物理化学学报, 2017, 33(5): 927-940.
[3] 王漪,贾南方,齐胜利,田国峰,武德珍. 1, 8-萘酰亚胺衍生物的合成、表征及电存储性能[J]. 物理化学学报, 2017, 33(11): 2227-2236.
[4] 刘晓龙,李晓霞,韩嵩,乔显杰,钟北京,郭力. RP-3高温氧化初始阶段反应机理的ReaxFF MD模拟[J]. 物理化学学报, 2016, 32(6): 1424-1433.
[5] 崔大超,任卫同,李文飞,王炜. 腺苷酸激酶催化循环后期Mg2+转移的分子动力学模拟[J]. 物理化学学报, 2016, 32(2): 429-435.
[6] 徐诗文,林东强,姚善泾. 布洛芬与人血白蛋白位点II动态结合过程的分子模拟:一种结合途径分析[J]. 物理化学学报, 2016, 32(11): 2811-2818.
[7] 鲁相,陈循,汪亚顺,谭源源,高木子源. 气体在无定型聚异戊二烯中扩散的分子动力学模拟[J]. 物理化学学报, 2016, 32(10): 2523-2530.
[8] 赵梦尧,杨雪平,杨晓宁. 石墨烯狭缝受限孔道中水分子的分子动力学模拟[J]. 物理化学学报, 2015, 31(8): 1489-1498.
[9] 吴选军, 赵鹏, 方继敏, 王杰, 刘保顺, 蔡卫权. 新型掺杂多孔芳香骨架材料的储氢性能模拟[J]. 物理化学学报, 2014, 30(11): 2043-2054.
[10] 何文英, 姚小军, 华英杰, 黄国雷, 吴秀丽, 李小宝, 韩长日, 宋小平. 考拉维酸对人血清白蛋白结构的影响[J]. 物理化学学报, 2014, 30(11): 2142-2148.
[11] 卞富永, 张继伟, 王丹, 徐四川. 甲基多巴透过POPC磷脂双层膜过程的分子动力学模拟[J]. 物理化学学报, 2014, 30(10): 1947-1956.
[12] 刘媛, 龙梅, 谢孟峡. 白杨素与不同构型人血清白蛋白的作用机制[J]. 物理化学学报, 2013, 29(12): 2647-2654.
[13] 黄永棋, 康雪, 夏斌, 刘志荣. Mpro-C蛋白三维结构域交换的机理: 来自分子模拟的线索[J]. 物理化学学报, 2012, 28(10): 2411-2417.
[14] 梅拥军, 韩一秀, 周洪, 姚林, 江波. 疏水缔合聚丙烯酸与蠕虫状胶束的协同作用[J]. 物理化学学报, 2012, 28(07): 1751-1756.
[15] 孙德林, 周健. 耗散粒子动力学模拟Nafion膜和PVA/Nafion共混膜的介观结构[J]. 物理化学学报, 2012, 28(04): 909-916.