Please wait a minute...
物理化学学报  2018, Vol. 34 Issue (10): 1144-1150    DOI: 10.3866/PKU.WHXB201802122
所属专题: 材料科学的分子模拟
论文     
聚合物接枝Janus纳米片形变的耗散粒子动力学研究
陆腾1,周永祥1,2,郭洪霞1,2,*()
1 中国科学院化学研究所,北京分子科学国家实验室,高分子科学与材料联合实验室,高分子物理与化学国家重点实验室,北京 100190
2 中国科学院大学, 北京 100049
Deformation of Polymer-Grafted Janus Nanosheet: A Dissipative Particle Dynamic Simulations Study
Teng LU1,Yongxiang ZHOU1,2,Hongxia GUO1,2,*()
1 Beijing National Laboratory for Molecular Sciences, Joint Laboratory of Polymer Sciences and Materials, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
2 University of Chinese Academy of Sciences, Beijing 100049, P. R. China
 全文: PDF(2356 KB)   HTML 输出: BibTeX | EndNote (RIS) |
摘要:

由于在检测、药物输运、分子马达等领域具有广阔的应用前景,二维柔性响应Janus材料受到了广泛的关注。但遗憾的是,这些二维材料的响应形变的分子机理仍不明确。基于此,我们采用介观尺度的耗散粒子动力学模拟方法系统研究了Janus纳米片两侧接枝不同长度和不同溶剂相容性的高分子链对Janus纳米片形变的影响。我们发现由于构象熵和混合焓的共同作用,通过对接枝链长度和溶剂相容性的调整,Janus纳米片可以形成如反相包覆、信封装包覆和碗状等新奇的结构。我们的理论结果首次提供了对二维柔性Janus材料可控形变的基本认识,并预报了设计合成新型Janus纳米器件在药物和生物医学领域的潜在应用。

关键词: Janus纳米材料聚合物两亲性复合材料形态调控耗散粒子动力学模拟    
Abstract:

Because of broad potential applications in sensing, drug delivery, and molecular motors, two-dimensional (2D), flexible, responsive Janus materials have attracted considerable interest recently in many fields. Unfortunately, the molecular-level responsive deformation of these 2D Janus nanomaterials is still not clearly understood. Hence, investigating the influence factor and responsiveness of the deformation of the 2D flexible responsive Janus nanomaterials should be helpful to deepen our understanding of the deformation mechanism and may provide valuable information in the design and synthesis of novel functional 2D Janus nanomaterials. Therefore, a mesoscopic simulation method, dissipative particle dynamics simulation, based on coarse-grained models, is employed in this work to systematically investigate the effect of the chain length difference between grafted polymers within two compartments of each individual Janus nanosheet and the effect of solvent selectivity difference of these two compartments on the deformation of the polymer-grafted Janus nanosheet. Although the coarse-grained model within this simulation is relatively crude, it is still valid to provide a qualitative image of the deformation of the polymer-grafted Janus nanosheet. Furthermore, we find two basic principles: (1) with increasing length difference between grafted polymers on the two opposite surfaces, the nanosheet will bear an entropy-driven deformation with increasing curvature; (2) the solvent will preferentially wet the polymer layer with better compatibility, and such a swelling effect may also provide a driving force for the deformation process. Owing to the interplay of conformational entropy and mixing enthalpy, the equilibrium structures of the polymer-grafted Janus nanosheet result in several interesting structures, such as a tube-like structure with a hydrophobic outer surface, an envelope-like structure, and a bowl-like structure, with tuning of the chain length and solvent compatibility of grafted polymers. Additionally, an unusually tube-like structure with a hydrophobic outer surface has been observed for a relatively weak solvent selectivity, which may provide us a novel method to transfer materials into the incompatible environment and therefore has potential applications in many areas, such as controllable drug delivery and release, and industrial and medical detection. Our theoretical results first provide a fundamental insight into the controllable deformation of the flexible Janus nanosheet, which can then help in the design and synthesis of novel Janus nanodevices for potential applications in pharmaceuticals and biomedicine. Bearing the limited of the computational capabilities, our model Janus nanosheets are relatively small, which are not direct mappings from real system. We hope that a systematic simulation study on this topic would be possible soon with the rapid developments in computer technology and simulation methods, and this would provide an exhaustive and universal methodology to guide experimental studies and applications.

Key words: Janus nanomaterial    Polymer    Amphiphilic composites    Morphology control    Dissipative particle dynamics simulation
收稿日期: 2018-01-03 出版日期: 2018-04-13
中图分类号:  O647  
基金资助: 国家自然科学基金(21174154);国家自然科学基金(21204094);国家自然科学基金(50930002);国家自然科学基金(20874110);国家自然科学基金(20674093);国家重点基础研究发展计划(973)(2014CB643601)
通讯作者: 郭洪霞     E-mail: hxguo@iccas.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
陆腾
周永祥
郭洪霞

引用本文:

陆腾,周永祥,郭洪霞. 聚合物接枝Janus纳米片形变的耗散粒子动力学研究[J]. 物理化学学报, 2018, 34(10): 1144-1150, 10.3866/PKU.WHXB201802122

Teng LU,Yongxiang ZHOU,Hongxia GUO. Deformation of Polymer-Grafted Janus Nanosheet: A Dissipative Particle Dynamic Simulations Study. Acta Phys. -Chim. Sin., 2018, 34(10): 1144-1150, 10.3866/PKU.WHXB201802122.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201802122        http://www.whxb.pku.edu.cn/CN/Y2018/V34/I10/1144

Fig 1  Schematic of the model of polymer grafted Janus sheet. The nanosheet is constructed by three layers of cross-linking particles while the opposite surfaces are grafted different polymer chains. The white, red and green particles represent polymer A, nanosheet and polymer B, respectively. color online.
w n p1 p2
w 25 75 75 2.5–47.5
n 75 25 75 75
p1 75 75 25 75
p2 47.5–2.5 75 75 25
Table 1  Repulsion parameters used in the simulation.
Fig 2  Schematic of typical equilibrating structures: (a) plate; (b) inverse-bowl; (c) nanotube; (d) scroll; (e) double-scroll; (f) envelope. For better visibility, the nanosheets are shown as sectional while the water particles are omitted.
Fig 3  Phase diagram of equilibrating structures as a function of the Np2 -Np1 and awp2 -awp1.
Fig 4  Equilibrating structures for awp2 = awp1 with varied grafted length difference: (a) 1 : 1, (b) 1 : 2, (c) 1 : 3, (d) 1 : 4, (e) 1 : 5, (f) 1 : 6, respectively. For better visibility, the nanosheets are shown as sectional view while the water particles are omitted.
Fig 5  Equilibrating structures at fixed grafted length 1 : 1 with varied solvent selectivity awp2 -awp1 = (a) -40, (b) -30, (c) -20, (d) -10, (e) 0, (f) 10, (g) 20, (h) 30, (i) 40, respectively. For better visibility, the nanosheets are shown as sectional view while the water particles are omitted in (f)–(i).
1 de Gennes P. G. Rev. Mod. Phys. 1992, 64, 645.
doi: 10.1103/RevModPhys.64.645
2 Hong L. ; Cacciuto A. ; Luijten E. ; Granick S. Nano Lett. 2006, 6, 2510.
doi: 10.1021/nl061857i
3 Takei H. ; Shimizu N. Langmuir 1997, 13, 1865.
doi: 10.1021/la9621067
4 Glotzer S. C. Science 2004, 306, 419.
doi: 10.1126/science.1099988
5 Roh K. H. ; Martin D. C. ; Lahann J. Nat. Mater. 2005, 4, 759.
doi: 10.1038/nmat1486
6 Dendukuri D. ; Pregibon D. C. ; Collins J. ; Hatton T. A. ; Doyle P. S. Nat. Mater. 2006, 5, 365.
doi: 10.1038/nmat1617
7 Xu G. ; Huang Z. ; Chen P. ; Cui T. ; Zhang X. ; Miao B. ; Yan L.-T. Small 2017, 13, 1603155.
doi: 10.1002/smll.201603155
8 Ruhland T. M. ; Groschel A. H. ; Walther A. ; Muller A. H. E. Langmuir 2011, 27, 9807.
doi: 10.1021/la201863x
9 Huang M. ; Li Z. ; Guo H. Soft Matter 2012, 8, 6834.
doi: 10.1039/C2SM25086A
10 Binks B. P. ; Fletcher P. D. I. Langmuir 2001, 17, 4708.
doi: 10.1021/la0103315
11 Glaser N. ; Adams D. J. ; Boker A. ; Krausch G Langmuir 2006, 22, 5227.
doi: 10.1021/la060693i
12 Yan L. -T. ; Popp N. ; Ghosh S. -K. ; B?ker A. ACS Nano 2010, 4, 913.
doi: 10.1021/nn901739v
13 Chen P. ; Yang Y. ; Dong B. ; Huang Z. ; Zhu G. ; Cao Y. ; Yan L.-T. Macromolecules 2017, 50, 2078.
doi: 10.1021/acs.macromol.7b00012
14 Liang F. ; Shen K. ; Qu X. ; Zhang C. ; Wang Q. ; Li J. ; Liu J. ; Yang Z. Angew. Chem. Int. Ed. 2011, 50, 2379.
doi: 10.1002/anie.201007519
15 Chen Y. Macromolecules 2012, 45, 2619.
doi: 10.1021/ma201495m
16 Xu X. ; Liu Y. ; Gao Y. ; Li H. Colloid Surface A 2017, 529, 613.
doi: 10.1016/j.colsurfa.2017.06.048
17 Nonomura Y. ; Komura S. ; Tsujii K. Langmuir 2004, 20, 11821.
doi: 10.1021/la0480540
18 Nonomura Y. ; Komura S. ; Tsujii K. J. Phys. Chem. B 2006, 110, 13124.
doi: 10.1021/jp0617017
19 Huang M. ; Guo H. Soft Matter 2013, 9, 7356.
doi: 10.1039/C3SM50957E
20 Ji Q. ; Yuan B. ; Lu X. ; Yang K. ; Ma Y. Small 2016, 12, 1140.
doi: 10.1002/smll.201501885
21 Deng R. ; Liang F. ; Zhu J. ; Yang Z. Mater. Chem. Front. 2017, 1, 431.
doi: 10.1039/C6QM00116E
22 Xiang W. ; Zhao S. ; Song X. ; Fang S. ; Wang F. ; Zhong C. ; Luo Z. Phys. Chem. Chem. Phys. 2017, 19, 7576.
doi: 10.1039/C6CP08654C
23 Walther A. ; Andre X. ; Drechsler M. ; Abetz V. ; Muller A. H. E. J. Am. Chem. Soc. 2007, 129, 6187.
doi: 10.1021/ja068153v
24 Walther A. ; Hoffmannc M. ; Muller A. H. E. Angew. Chem. 2007, 119, 737.
doi: 10.1002/(ISSN)1521-3757
25 Walther A. ; Matussek K. ; Muller A. H. E. ACS Nano 2008, 2, 1167.
doi: 10.1021/nn800108y
26 Walther A. ; Drechsler M. ; Muller A. H. E. Soft Matter 2009, 5, 385.
doi: 10.1039/B812321G
27 Liang F. X. ; Shen K. ; Qu X. Z. ; Zhang C. L. ; Wang Q. ; Li J. L. ; Liu J. G. ; Yang Z. Z. Angew. Chem. Int. Ed. 2011, 50, 2379.
doi: 10.1002/anie.201007519
28 Yang H. L. ; Liang F. X. ; Wang X. ; Chen Y. ; Zhang C. L. ; Wang Q. ; Qu X. Z. ; Li J. L. ; Wu D. C. ; Yang Z. Z. Macromolecules 2013, 46, 2754.
doi: 10.1021/ma400261y
29 Han D. ; Xiao P. ; Gu J. ; Chen J. ; Cai Z. ; Zhang J. ; Wang W. ; Chen T. RSC Adv. 2014, 4, 22759.
doi: 10.1039/C4RA02826K
30 Zhao Z. G. ; Liang F. X. ; Zhang G. L. ; Ji X. Y. ; Wang Q. ; Qu X. Z. ; Song X. M. ; Yang Z. Z. Macromolecules 2015, 48, 3598.
doi: 10.1021/acs.macromol.5b00365
31 Liu Y. ; Liang F. ; Wang Q. ; Qu X. ; Yang Z. Chem. Commun. 2015, 51, 3562.
doi: 10.1039/C4CC08420A
32 Qi H. ; Zhou T. ; Mei S. ; Chen X. ; Li C. Y. ACS Macro Lett. 2016, 5, 651.
doi: 10.1021/acsmacrolett.6b00251
33 Liu Y. ; Xu X. ; Liang F. ; Yang Z. Macromolecules 2017, 50, 9042.
doi: 10.1021/acs.macromol.7b01558
34 Yan L. -T. ; Maresov E. ; Buxton G. A. ; Balazs A. C. Soft Matter 2011, 7, 595.
doi: 10.1039/C0SM00803F
35 Chen P. ; Huang Z. ; Liang J. ; Cui T. ; Zhang X. ; Miao B. ; Yan L.-T. ACS Nano 2016, 10, 11541.
doi: 10.1021/acsnano.6b07563
36 He L. ; Pan Z. ; Zhang L. ; Liang H. Soft Matter 2011, 7, 1147.
doi: 10.1039/C0SM00703J
37 Zhou, Y. ; Huang, M. ; Lu, T. ; Guo, H. Macromolecules submitted.
38 Hoogerbrugge P. J. ; Koelman J. M. V. A. Europhys. Lett. 1992, 19, 155.
doi: 10.1209/0295-5075/19/3/001
39 Espanol P. ; Warren P. Europhys. Lett. 1995, 30, 191.
doi: 10.1209/0295-5075/30/4/001
40 Espanol P. Europhys. Lett. 1997, 40, 631.
doi: 10.1209/epl/i1997-00515-8
41 Groot R. D. ; Warren P. B. J. Chem. Phys. 1997, 107, 4423.
doi: 10.1063/1.474784
42 Jin Y. ; Xue Q. ; Lei Z. ; Li X. ; Pan X. ; Zhang J. ; Xing W. ; Wu T. Sci. Rep. 2016, 6, 26914.
doi: 10.1038/srep26914
[1] 薛智敏,严传玉,赵新辉,于东琨,牟天成. Hofmeister离子对水溶液中热响应聚合物的局域环境的影响[J]. 物理化学学报, 2019, 35(1): 49-57.
[2] 韩雪,杨进,刘莹莹,马建方. 三氮唑取代杯[4]芳烃配位聚合物的合成与荧光性能[J]. 物理化学学报, 2018, 34(5): 476-482.
[3] 马强,胡勇胜,李泓,陈立泉,黄学杰,周志彬. 双(三氟甲基磺酰)亚胺钠基聚合物电解质在固态钠电池中的性能[J]. 物理化学学报, 2018, 34(2): 213-218.
[4] 袁俊,刘晔,朱灿,沈平,万梅秀,冯柳柳,邹应萍. 基于侧链不对称喹喔啉聚合物的高效非富勒烯太阳电池[J]. 物理化学学报, 2018, 34(11): 1272-1278.
[5] 国霞,凡群平,崔超华,张志国,张茂杰. 基于无规三元共聚物的非卤溶液加工型高效聚合物太阳能电池[J]. 物理化学学报, 2018, 34(11): 1279-1285.
[6] 杜惟实,吕耀康,蔡志威,张诚. 基于三维多孔石墨烯/含钛共轭聚合物复合多孔薄膜的柔性全固态超级电容器[J]. 物理化学学报, 2017, 33(9): 1828-1837.
[7] 姚婵,李国艳,许彦红. 富羧酸基团的共轭微孔聚合物:结构单元对孔隙和气体吸附性能的影响[J]. 物理化学学报, 2017, 33(9): 1898-1904.
[8] 郑江波,陈智明,胡志诚,张杰,黄飞. 新型基于二氟苯并噻二唑和双噻吩丙烯腈共轭聚合物的设计、合成及光伏性能[J]. 物理化学学报, 2017, 33(8): 1635-1643.
[9] 廖友好,李伟善. 锂离子电池凝胶聚合物隔膜的研究进展[J]. 物理化学学报, 2017, 33(8): 1533-1547.
[10] 范其瑭,朱俊发. 利用表面模板调控低维有机纳米材料的拓扑结构[J]. 物理化学学报, 2017, 33(7): 1288-1296.
[11] 夏锐,王时茂,董伟伟,方晓东. 量子点敏化太阳能电池对电极研究进展[J]. 物理化学学报, 2017, 33(4): 670-690.
[12] 易庆华,赵杰,娄艳辉,邹贵付,刘忠范. 聚合物辅助设计生长高质量多功能薄膜[J]. 物理化学学报, 2017, 33(2): 314-328.
[13] 廖春荣,熊峰,李贤军,吴义强,罗勇锋. 导电聚合物在纤维状能源器件中的应用进展[J]. 物理化学学报, 2017, 33(2): 329-343.
[14] 张少青,侯剑辉. 面向非富勒烯型有机光伏电池的聚合物给体材料设计[J]. 物理化学学报, 2017, 33(12): 2327-2338.
[15] 王亚丹,肖强,钟依均,朱伟东. 密胺苯二醛多孔聚合物/聚二甲基硅氧烷混合基质膜的制备及气体分离性能[J]. 物理化学学报, 2017, 33(10): 2058-2063.