Please wait a minute...
物理化学学报  2018, Vol. 34 Issue (10): 1151-1162    DOI: 10.3866/PKU.WHXB201802261
所属专题: 材料科学的分子模拟
论文     
CL-20热分解反应机理的ReaxFF分子动力学模拟
任春醒1,2,李晓霞1,2,*(),郭力1,2
1 中国科学院过程工程研究所,北京 100190
2 中国科学院大学,北京 100049
Reaction Mechanisms in the Thermal Decomposition of CL-20 Revealed by ReaxFF Molecular Dynamics Simulations
Chunxing REN1,2,Xiaoxia LI1,2,*(),Li GUO1,2
1 Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
2 University of Chinese Academy of Sciences, Beijing 100049, P. R. China
 全文: PDF(898 KB)   HTML 输出: BibTeX | EndNote (RIS) |
摘要:

为探究固相CL-20热分解反应机理,本文采用反应分子动力学ReaxFF MD模拟研究了含有128个CL-20分子的超胞模型在800–3000 K温度下的热分解过程。借助作者所在课题组研发的反应分析及可视化工具VARxMD得到了热分解过程中多种反应中间物和较为全面的反应路径。氮氧化物是CL-20初始分解的主要中间产物,其中NO2是数量最多的初始分解产物,观察到的中间物NO3的生成量仅次于NO2。统计CL-20初始分解的所有反应后发现,在所有考察温度下CL-20初始分解路径主要是N―NO2断裂反应和C―N键断裂引起开环的单分子反应路径。N―NO2断裂反应数量在高温下显著增多,而C―N键断裂引起的开环反应数量随温度升高变化不大。在低温热分解模拟中还观察到CL-20初始分解阶段生成的NO2会发生双分子反应—从CL-20分子中夺氧生成NO3。对CL-20热分解过程中环结构演化进行分析后发现,CL-20分解的早期反应中间物主要为具有3元或2元稠环结构的吡嗪衍生物,随后它们会分解形成单环吡嗪。吡嗪六元环结构在热分解过程中非常稳定,这一模拟结果支持Py-GC/MS实验中提出吡嗪存在的结论。CL-20中的咪唑五元环结构相对不稳定,在热分解过程中会发生开环分解而较早消失。由ReaxFF MD模拟得到的3000 K高温热分解产物N2,H2O,CO2和H2的数量与爆轰实验的测量结果定量吻合。本文获得的对CL-20热分解机理的认识表明ReaxFF MD结合VARxMD有可能为深入了解热刺激下含能材料复杂化学过程提供一种有前景的方法。

关键词: CL-20热分解反应机理ReaxFF MD环结构演化    
Abstract:

The thermal decomposition of condensed CL-20 was investigated using reactive force field molecular dynamics (ReaxFF MD) simulations of a super cell containing 128 CL-20 molecules at 800–3000 K. The VARxMD code previously developed by our group is used for detailed reaction analysis. Various intermediates and comprehensive reaction pathways in the thermal decomposition of CL-20 were obtained. Nitrogen oxides are the major initial decomposition products, generated in a sequence of NO2, NO3, NO, and N2O. NO2 is the most abundant primary product and is gradually consumed in subsequent secondary reactions to form other nitrogen oxides. NO3 is the second most abundant intermediate in the early stages of CL-20 thermolysis. However, it is unstable and quickly decomposes at high temperatures, while other nitrogen oxides remain. At all temperatures, the unimolecular pathways of N―NO2 bond cleavage and ring-opening C―N bond scission dominate the initial decomposition of condensed CL-20. The cleavage of the N―NO2 bond is greatly enhanced at high temperatures, but scission of the C―N bond is not as favorable. A bimolecular pathway of oxygen-abstraction by NO2 to generate NO3 is observed in the initial decomposition steps of CL-20, which should be considered as one of the major pathways for CL-20 decomposition at low temperatures. After the initiation of CL-20 decomposition, fragments with different ring structures are formed from a series of bond-breaking reactions. Analysis of the ring structure evolution indicates that the pyrazine derivatives of fused tricycles and bicycles are early intermediates in the decomposition process, which further decompose to single ring pyrazine. Pyrazine is the most stable ring structure obtained in the simulations of CL-20 thermolysis, supporting the proposed existence of pyrazine in Py-GC/MS experiments. The single imidazole ring is unstable and decomposes quickly in the early stages of CL-20 thermolysis. Many C4 and C2 intermediates are observed after the initial fragmentation, but eventually convert into stable products. The distribution of the final products (N2, H2O, CO2, and H2) obtained in ReaxFF MD simulation of CL-20 thermolysis at 3000 K quantitatively agrees with the results of the CL-20 detonation experiment. The comprehensive understanding of CL-20 thermolysis obtained through this study suggests that ReaxFF MD simulation, combined with the reaction analysis capability of VARxMD, would be a promising method for obtaining deeper insight into the complex chemistry of energetic materials exposed to thermal stimuli.

Key words: CL-20    Thermal decomposition    Reaction mechanism    ReaxFF MD    Evolution of ring structure
收稿日期: 2018-01-03 出版日期: 2018-04-13
中图分类号:  O643  
基金资助: 国家自然科学基金(21373227)
通讯作者: 李晓霞     E-mail: xxia@ipe.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
任春醒
李晓霞
郭力

引用本文:

任春醒,李晓霞,郭力. CL-20热分解反应机理的ReaxFF分子动力学模拟[J]. 物理化学学报, 2018, 34(10): 1151-1162, 10.3866/PKU.WHXB201802261

Chunxing REN,Xiaoxia LI,Li GUO. Reaction Mechanisms in the Thermal Decomposition of CL-20 Revealed by ReaxFF Molecular Dynamics Simulations. Acta Phys. -Chim. Sin., 2018, 34(10): 1151-1162, 10.3866/PKU.WHXB201802261.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201802261        http://www.whxb.pku.edu.cn/CN/Y2018/V34/I10/1151

Fig 1  Initial super cell of CL-20 with 4608 atoms.
Fig 2  Temporal evolution of CL-20 and main intermediate species and the time for their first appearing during thermolysis of CL-20 obtained in ReaxFF MD simulation at 3000 K. (a) for 50 ps, (b) for 500 ps.
Species Quantities of products (per CL-20)
in detonation experiment 34 in AIMD simulation at 3000 K 8 in ReaxFF MD simulation at 3000 K (this work)
NO2 a 2.50 2.54
N2 5.61 6.25 5.49
H2O 2.31 0.75 1.71
CO2 3.60 4.00 3.48
CO 2.02 1.30 0.03
H2 0.27 0.38
Table 1  Comparison of gas product distribution of CL-20 decomposition in detonation experiment, AIMD simulation and ReaxFF MD simulation at 3000 K.
T/K Time for consumption of 2% CL-20
(t/ps)
Time for run-out of CL-20 (t/ps)
800 2.4
1000 1.7 236.9
1250 1.7 40.4
1500 1.6 5.9
1750 1.6 5.1
2000 1.6 4.3
3000 1.6 4.2
Table 2  Time for the start and end of CL-20 consumption during the thermolysis simulations at temperatures of 800–3000 K obtained by ReaxFF MD.
Fig 3  Evolution of intermediates during the thermolysis simulations of CL-20 at temperatures of 800–3000 K obtained by ReaxFF MD. (a) NO2, (b) NO3, (c) NO, (d) N2O.
Fig 4  Product distribution of CL-20 thermolysis at 500 ps in isothermal ReaxFF MD simulations of 800–3000 K.
Fig 5  Initial reaction pathways in decomposition of CL-20 molecules.
Intermediate Formula Intermediate fragment structures Reported literature and method
CL-20-INT Ⅰ C6H6N11O10 QM 7
CL-20-INT Ⅱ C6H6N12O12
CL-20-INT Ⅲ C6H6N12O11 ReaxFF MD 11
CL-20-INT Ⅳ C6H6N11O10
CL-20-INT Ⅴ C4HxNyOz Py-GC/MS 6
CL-20-INT Ⅵ C2HxNyOz
Table 3  Examples of intermediates and their chemical structures in Fig. 5 for initial pathways of CL-20 thermolysis obtained in ReaxFF MD simulations.
Fig 6  Numbers of the initial decomposition reactions of CL-20 molecules obtained in three parallel ReaxFF MD simulations of CL-20 thermolysis at 1000–3000 K.
Fig 7  Temporal evolution of CL-20 molecules and different fragments in the ReaxFF MD simulation of CL-20 thermolysis at 1000 K.
Fig 8  Temporal evolution of CL-20 molecules and fragments with different ring structures obtained during the ReaxFF MD simulation of CL-20 thermolysis at 1000 K.
Fig 9  Temporal evolution of fragments F3 with pyrazine ring obtained in the ReaxFF MD simulations of CL-20 thermolysis at 1000–3000 K.
Fig 10  Reaction pathways on the formation and interactions of nitrogen oxides and OH radicals involved in the fragmentation stage of CL-20 thermolysis obtained in ReaxFF MD simulations.
NO. Reaction pathways Number of reactions
1000 K 1500 K 2000 K
Ⅰ-1 RNNO2 + NO2 → RNNO + NO3 146 130 81
Ⅰ-2 RNNO + NO2 → RNN + NO3 48 87 77
Ⅰ-3 N2O + NO2 → N2 + NO3 20 44 31
NO2 + NO2 ⇌ NO + NO3 34/24 543/497 414/347
H-abstraction by NO3 to form HNO3 27/5 292/173 363/167
The oxidation of intermediate fragments by NO3 6/3 113/45 100/16
Table 4  Number of reactions on the formation and consumption of nitrate radicals (NO3) in thermal decomposition of CL-20 at 1000–2000 K obtained in ReaxFF MD simulations.
1 Nielsen A. T. ; Chafin A. P. ; Christian S. L. ; Moore D. W. ; Nadler M. P. ; Nissan R. A. ; Vanderah D. J. ; Gilardi R. D. ; George C. F. ; Flippen-Anderson J. L. Tetrahedron 1998, 54 (39), 11793.
doi: 10.1016/S0040-4020(98)83040-8
2 (a) Wenograd, J. Trans. Faraday Soc. 1961, 57 (9), 1612. doi: 10.1039/tf9615701612
(b) Brill, T. B. ; James, K. J. Chem. Rev. 1993, 93 (8), 2667. doi: 10.1021/cr00024a005
(c) Botcher, T. R. ; Wight, C. A. J. Phys. Chem. 1994, 98 (21), 5441. doi: 10.1021/j100072a009
(d) Politzer, P. ; Boyd, S. Struct. Chem. 2002, 13 (2), 105. doi: 10.1023/a:1015748330357
3 Patil, D. G. ; Brill, T. B. Combust. Flame 1991, 87 (2), 145. doi: 10.1016/0010-2180(91)90164-7
4 Patil D. G. ; Brill T. B. Combust. Flame 1993, 92 (4), 456.
doi: 10.1016/0010-2180(93)90155-v
5 (a) Korsounskii, B. L. ; Nedel'ko, V. V. ; Chukanov, N. V. ; Larikova, T. S. ; Volk, F. Russ. Chem. Bull. 2000, 49 (5), 812. doi: 10.1007/bf02494701
(b) Nedel'ko, V. V. ; Chukanov, N. V. ; Raevskii, A. V. ; Korsounskii, B. L. ; Larikova, T. S. ; Kolesova, O. I. ; Volk, F. Prop. Explos. Pyrotech. 2000, 25 (5), 255. doi: 10.1002/1521-4087(200011)25:5<255::aid-prep255>3.0.co;2-8
6 Naik N. H. ; Gore G. M. ; Gandhe B. R. ; Sikder A. K. J. Hazard. Mater. 2008, 159 (2–3), 630.
doi: 10.1016/j.jhazmat.2008.02.049
7 Okovytyy S. ; Kholod Y. ; Qasim M. ; Fredrickson H. ; Leszczynski J. J. Phys. Chem. A 2005, 109 (12), 2964.
doi: 10.1021/jp045292v
8 Isayev O. ; Gorb L. ; Qasim M. ; Leszczynski J. J. Phys. Chem. B 2008, 112 (35), 11005.
doi: 10.1021/jp804765m
9 Xue X. ; Wen Y. ; Zhang C. J. Phys. Chem. C 2016, 120 (38), 21169.
doi: 10.1021/acs.jpcc.6b05228
10 (a) Guo, D. Z. ; An, Q. ; Zybin, S. V. ; Goddard, W. A. ; Huang, F. L. ; Tang, B. J. Mater. Chem. A 2015, 3 (10), 5409. doi: 10.1039/c4ta06858k
(b) Xue, X. ; Ma, Y. ; Zeng, Q. ; Zhang, C. J. Phys. Chem. C 2017, 121 (9), 4899. doi: doi: 10.1021/acs.jpcc.7b00698
11 Yan Q.-L. ; Zeman S. ; Sanchez-Jimenez P. E. ; Zhang T.-L. ; Perez-Maqueda L. A. ; Elbeih A. J. Phys. Chem. C 2014, 118 (40), 22881.
doi: 10.1021/jp505955n
12 Zhang L. Z. ; Zybin S. V. ; van Duin A. C. T. ; Goddard W. A. J. Energ. Mater. 2010, 28, 92.
doi: 10.1080/07370652.2010.504682
13 (a) Strachan, A. ; van Duin, A. C. T. ; Chakraborty, D. ; Dasgupta, S. ; Goddard, W. A. Phys. Rev. Lett. 2003, 91 (9). doi: 10.1103/PhysRevLett.91.098301
(b) An, Q. ; Liu, Y. ; Zybin, S. V. ; Kim, H. ; Goddard, W. A. J. Phys. Chem. C 2012, 116 (18), 10198. doi: 10.1021/jp300711m
14 Wood M. A. ; van Duin A. C. T. ; Strachan A. J. Phys. Chem. A 2014, 118 (5), 885.
doi: 10.1021/jp406248m
15 (a) Furman, D. ; Kosloff, R. ; Dubnikova, F. ; Zybin, S. V. ; Goddard, W. A., Ⅲ; Rom, N. ; Hirshberg, B. ; Zeiri, Y. J. Am. Chem. Soc. 2014, 136 (11), 4192. doi: 10.1021/ja410020f
(b) Strachan, A. ; Kober, E. M. ; van Duin, A. C. T. ; Oxgaard, J. ; Goddard, W. A. J. Chem. Phys. 2005, 122 (5). doi: 10.1063/1.1831277
(c) Zhou, T. T. ; Liu, L. C. ; Goddard, W. A. ; Zybin, S. V. ; Huang, F. L. Phys. Chem. Chem. Phys. 2014, 16 (43), 23779. doi: 10.1039/c4cp03781b
16 Li X. ; Mo Z. ; Liu J. ; Guo L. Mol. Simulat. 2015, 41 (1–3), 13.
doi: 10.1080/08927022.2014.913789
17 Foltz M. F. ; Coon C. L. ; Garcia F. ; Nichols A. L. Prop. Explos. Pyrotech. 1994, 19 (1), 19.
doi: 10.1002/prep.19940190105
18 (a) Turcotte, R. ; Vachon, M. ; Kwok, Q. S. M. ; Wang, R. ; Jones, D. E. G. Thermochim. Acta 2005, 433 (1–2), 105. doi: 10.1016/j.tca.2005.02.021
(b) Irikura, K. K. ; Johnson, R. D. J. Phys. Chem. A 2006, 110 (51), 13974. doi: 10.1021/jp065611d
19 (a) Bolton, O. ; Matzger, A. J. Angew. Chem. Int. Ed. 2011, 50 (38), 8960. doi: 10.1002/anie.201104164
(b) Bolton, O. ; Simke, L. R. ; Pagoria, P. F. ; Matzger, A. J. Cryst. Growth Des. 2012, 12 (9), 4311. doi: 10.1021/cg3010882
(c) Wang, Y. ; Yang, Z. ; Li, H. ; Zhou, X. ; Zhang, Q. ; Wang, J. ; Liu, Y. Prop. Explos. Pyrotech. 2014, 39 (4), 590. doi: 10.1002/prep.201300146
(d) Yang, Z. ; Li, H. ; Zhou, X. ; Zhang, C. ; Huang, H. ; Li, J. ; Nie, F. Cryst. Growth Des. 2012, 12 (11), 5155. doi: 10.1021/cg300955q
20 doi: http://accelrys.com/products/materials-studio/ (accessed Mar 13; 2016).
21 Ou Y. X. ; Jia H. P. ; Xu Y. J. ; Chen B. R. ; Fan G. Y. ; Liu L. H. ; Zheng F. P. ; Pan Z. L. ; Wang C. Sci. China-Chem. 1999, 42 (2), 217.
doi: 10.1007/bf02875520
22 Liu L. ; Liu Y. ; Zybin S. V. ; Sun H. ; Goddard Ⅲ W. A. J. Phys. Chem. A 2011, 115 (40), 11016.
doi: 10.1021/jp201599t
23 Sandia National Laboratories; LAMMPS. doi: http://lammps.sandia.gov/.
24 Liu J. ; Li X. ; Guo L. ; Zheng M. ; Han J. ; Yuan X. ; Nie F. ; Liu X. J. Mol. Graph. Model. 2014, 53, 13.
doi: 10.1016/j.jmgm.2014.07.002
25 Zheng M. ; Li X. ; Nie F. ; Guo L. Energy Fuels 2017, 31 (4), 3675.
doi: 10.1021/acs.energyfuels.6b03243
26 Liu X. ; Li X. ; Liu J. ; Wang Z. ; Kong B. ; Gong X. ; Yang X. ; Lin W. ; Guo L. Polym. Degrad. Stab. 2014, 104, 62.
doi: 10.1016/j.polymdegradstab.2014.03.022
27 (a) Zhang, T. ; Li, X. ; Qiao, X. ; Zheng, M. ; Guo, L. ; Song, W. ; Lin, W. Energy Fuels 2016, 30 (4), 3140. doi: 10.1021/acs.energyfuels.6b00247
(b) Zhang, T. ; Li, X. ; Guo, L. Langmuir 2017, 33 (42), 11646. doi: 10.1021/acs.langmuir.7b02053
28 Zheng M. ; Wang Z. ; Li X. ; Qiao X. ; Song W. ; Guo L. Fuel 2016, 177, 130.
doi: 10.1016/j.fuel.2016.03.008
29 Wang Z.-M. ; Zheng M. ; Xie Y.-B. ; Li X.-X. ; Zeng M. ; Cao H.-B. ; Guo L. Acta Phys. -Chim. Sin. 2017, 33 (7), 1399.
doi: 10.3866/PKU.WHXB201704132
王子民; 郑默; 谢勇冰; 李晓霞; 曾鸣; 曹宏斌; 郭力. 物理化学学报, 2017, 33 (7), 1399.
doi: 10.3866/PKU.WHXB201704132
30 Liu X.-L. ; Li X.-X. ; Han S. ; Qiao X.-J. ; Zhong B.-J. ; Guo L. Acta Phys. -Chim. Sin. 2016, 32 (6), 1424.
doi: 10.3866/PKU.WHXB201603233
刘晓龙; 李晓霞; 韩嵩; 乔显杰; 钟北京; 郭力. 物理化学学报, 2016, 32 (6), 1424.
doi: 10.3866/PKU.WHXB201603233
31 Liu X. ; Li X. ; Nie F. ; Guo L. Energy Fuels. 2017, 31 (2), 1608.
doi: 10.1021/acs.energyfuels.6b02508
32 Han S. ; Li X. ; Nie F. ; Zheng M. ; Liu X. ; Guo L. Energy Fuels 2017, 31 (8), 8434.
doi: 10.1021/acs.energyfuels.7b01194
33 Simpson, R. L. ; Urtiew, P. A. ; Ornellas, D. L. ; Moody, G. L. ; Scribner, K. F. J. ; Hoffman, D. M. Prop. Explos. Pyrotech. 1997, 22 (5), 249. doi: 10.1002/prep.19970220502
34 Zhou T. ; Song H. ; Liu Y. ; Huang F. Phys. Chem. Chem. Phys. 2014, 16 (27), 13914.
doi: 10.1039/c4cp00890a
35 Budzien J. ; Thompson A. P. ; Zybin S. V. J. Phys. Chem. B 2009, 113 (40), 13142.
doi: 10.1021/jp9016695
36 (a) Zhou, T. T. ; Lou, J. F. ; Song, H. J. ; Huang, F. L. Phys. Chem. Chem. Phys. 2015, 17 (12), 7924. doi: 10.1039/c4cp05575f
(b) Zhou, T. T. ; Zhang, Y. G. ; Lou, J. F. ; Song, H. J. ; Huang, F. L. RSC Adv. 2015, 5 (12), 8609. doi: 10.1039/c4ra09943e
37 Yinon J. ; Yost R. A. ; Bulusu S. J. Chromatogr. A 1994, 688 (1–2), 231.
doi: 10.1016/0021-9673(94)00827-2
38 Behrens R. ; Bulusu S. J. Phys. Chem. 1992, 96 (22), 8891.
doi: 10.1021/j100201a037
39 (a) Behrens, R. ; Bulusu, S. J. Phys. Chem. 1992, 96 (22), 8877. doi: 10.1021/j100201a036
(b) Chakraborty, D. ; Muller, R. P. ; Dasgupta, S. ; Goddard, W. A. J. Phys. Chem. A 2001, 105 (8), 1302. doi: 10.1021/jp0026181
(c) Peng, L. -J. ; Yao, Q. ; Wang, J. -B. ; Li, Z. -R. ; Zhu, Q. ; Li, X. -Y. Acta Phys. -Chim. Sin. 2017, 33 (4), 745.
彭莉娟,姚倩,王静波,李泽荣,朱权,李象远.物理化学学报, 2017, 33 (4), 745. doi: 10.3866/PKU.WHXB201701161
[1] 陈必华,ELAGEED Elnazeer H. M.,张永亚,高国华. 离子液体BmmimOAc催化2-芳氨基乙醇与二硫化碳一步缩合合成3-芳基-2-噻唑硫酮[J]. 物理化学学报, 2018, 34(8): 952-958.
[2] 王子民,郑默,谢勇冰,李晓霞,曾鸣,曹宏斌,郭力. 基于ReaxFF力场的对硝基苯酚臭氧氧化分子动力学模拟[J]. 物理化学学报, 2017, 33(7): 1399-1410.
[3] 张英杰,朱子翼,董鹏,邱振平,梁慧新,李雪. LiFePO4电化学反应机理、制备及改性研究新进展[J]. 物理化学学报, 2017, 33(6): 1085-1107.
[4] 彭莉娟,姚倩,王静波,李泽荣,朱权,李象远. RDX及其衍生物高温热解的反应分子动力学模拟[J]. 物理化学学报, 2017, 33(4): 745-754.
[5] 李申慧,李静,郑安民,邓风. 固体酸催化剂结构与催化反应机理的核磁共振研究[J]. 物理化学学报, 2017, 33(2): 270-282.
[6] 于海洋,王昉,刘其春,马青玉,顾正桂. 新型丝素蛋白膜的结构和热分解动力学机理[J]. 物理化学学报, 2017, 33(2): 344-355.
[7] 郑东,钟北京,姚通. 航空煤油替代燃料模型构建方法及HEF航空煤油替代燃料模型[J]. 物理化学学报, 2017, 33(12): 2438-2445.
[8] 白晓芳,陈为,王白银,冯光辉,魏伟,焦正,孙予罕. 二氧化碳电化学还原的研究进展[J]. 物理化学学报, 2017, 33(12): 2388-2403.
[9] 方永进,陈重学,艾新平,杨汉西,曹余良. 钠离子电池正极材料研究进展[J]. 物理化学学报, 2017, 33(1): 211-241.
[10] 靳成伟,王叶,宿素玲,张建军. 3, 4-二乙氧基苯甲酸与2, 2'-联吡啶三元稀土配合物的合成、晶体结构及热化学性质[J]. 物理化学学报, 2016, 32(9): 2232-2240.
[11] 杨镇,刘海,何远航. 飞秒激光烧蚀含能材料的分子动力学模拟[J]. 物理化学学报, 2016, 32(8): 1977-1982.
[12] 郑晓頔,朱艳丽,董睿,焦清介. 烷基咪唑离子液体CnmimCl(n=4, 6, 8)对CL-20重结晶的影响[J]. 物理化学学报, 2016, 32(8): 1950-1959.
[13] 熊文慧,张文超,俞春培,沈瑞琪,程佳,叶家海,秦志春. 多孔纳米CoFe2O4的制备及其对高氯酸铵的热分解催化性能[J]. 物理化学学报, 2016, 32(8): 2093-2100.
[14] 吴爱明,夏国锋,沈水云,殷洁炜,毛亚,白清友,解晶莹,章俊良. 非水体系锂-空气电池研究进展[J]. 物理化学学报, 2016, 32(8): 1866-1879.
[15] 刘晓龙,李晓霞,韩嵩,乔显杰,钟北京,郭力. RP-3高温氧化初始阶段反应机理的ReaxFF MD模拟[J]. 物理化学学报, 2016, 32(6): 1424-1433.