Please wait a minute...
物理化学学报  2019, Vol. 35 Issue (2): 223-229    DOI: 10.3866/PKU.WHXB201802263
论文     
无表面活性剂条件下一锅法制备金属/氧化锌复合材料用于催化二氧化碳加氢制甲醇反应
刘艳芳,胡兵,尹雅芝,刘国亮*(),洪昕林*()
One-Pot Surfactant-Free Synthesis of Transition Metal/ZnO Nanocomposites for Catalytic Hydrogenation of CO2 to Methanol
Yanfang LIU,Bing HU,Yazhi YIN,Guoliang LIU*(),Xinlin HONG*()
 全文: PDF(1572 KB)   HTML 输出: BibTeX | EndNote (RIS) | Supporting Info
摘要:

由于温室效应的危害和人类对可再生能源的需求,二氧化碳加氢还原制甲醇成为非常重要的一个化学反应。最近几年的研究中,过渡金属/氧化锌纳米复合材料作为催化剂被广泛应用于该反应,这是因为过渡金属/氧化锌纳米复合材料具有优秀的协同功能以及独特的光电子和催化性能。因此,发展该复合材料的尺寸可控制备方法显得很有价值。虽然使用物理方法可以大批量制备催化材料,但却难以实现金属和载体间的强相互作用力。因此,研究者们更多地倾向于使用化学方法来制备多组分催化剂材料。然而,为了获取活性金属相,该催化剂通常需要氢气还原步骤;同时,还需要表面活性剂来控制纳米粒子的尺寸,这就使得大多数复合纳米材料的合成需要很多步骤,从而导致金属/氧化锌纳米复合材料催化性能的不稳定性。因此,我们发明了一种在回流乙二醇中一锅法合成金属(钯,金,银,铜)/氧化锌纳米复合材料的制备方法,该制备方法不需要任何表面活性剂。在该方法的制备过程中,钯和氧化锌可以通过减少各自的表面能从而在之后的聚集中互相稳定彼此来实现粒子的尺寸控制。此外,碳酸氢钠可以通过调整碱性度来控制钯纳米粒子的尺寸。而乙二醇作为一种温和的还原剂可以将钯离子还原成钯纳米粒子,同时还可以作为该制备过程的溶剂。在制备过程中,钯粒子通过热还原而成核和聚集,氧化锌纳米粒子则通过醋酸锌的热分解而形成。本文中,我们通过X射线衍射来分析制备的复合纳米材料的相态,结果显示,没有杂相。我们使用透射电镜来研究材料的形貌和结构特征。此外,X射线光电子能谱分析被用来确认金属/氧化锌复合材料的成分组成,结果显示钯和氧化锌之间有金属和载体间的强相互作用力。为了确定复合材料的真实元素组成,我们对材料进行了电感耦合等离子体质谱分析,并且发现理论值和实验值相吻合。为了研究钯锌投料比和碳酸氢钠对钯粒子尺寸的影响,我们通过X射线衍射结果计算出不同钯锌投料比和碳酸氢钠反应量下钯粒子的尺寸,并进行比较分析,之后利用透射电镜图进行进一步直观验证。众所周知,Cu/ZnO/Al2O3纳米复合材料是二氧化碳加氢制甲醇的优良催化剂,本文中研究的其他金属/氧化锌复合材料也可以很好地催化该反应。所以,为了进一步研究所制备的不同金属/氧化锌复合材料,我们将其作为催化剂,研究了它们对二氧化碳加氢制甲醇的催化作用;结果显示,当钯锌投料比为1 : 9,反应条件为240 ℃,5 MPa时,其催化效果最好,二氧化碳转化率为30%,甲醇选择性为69%。其出色的催化表现可能是以下两个因素,其一是因为钯是氢气解离为活泼氢原子的良好催化剂;其二是因为钯和氧化锌之间的强的金属和载体间相互作用力可以使得氧化锌表面形成表面氧空穴。此外,我们发现大部分金属/氧化锌复合物都表现出很高的甲醇选择性,尤其是金/氧化锌催化剂,它的甲醇选择性达到了82%,只是二氧化碳转化率较低。最后,希望本文可以提供一种制备金属/氧化锌的简便易行的方法,且该方法可以为金属/氧化锌用于催化时提供干净的催化表面。

关键词: 金属/氧化锌加氢二氧化碳甲醇纳米复合材料    
Abstract:

Catalytic hydrogenation of CO2 to methanol is an important chemical process owing to its contribution in alleviating the impacts of the greenhouse effect and in realizing the requirement for renewable energy sources. Owing to their excellent synergic functionalities and unique optoelectronic as well as catalytic properties, transition metal/ZnO (M/ZnO) nanocomposites have been widely used as catalysts for this reaction in recent years. Development of size-controlled synthesis of metal/oxide complexes is highly desirable. Further, because it is extremely difficult to achieve the strong-metal-support-interaction (SMSI) effect when the M/ZnO nanocomposites are prepared via physical methods, the use of chemical methods is more favorable for the fabrication of multi-component catalysts. However, because of the requirement for an extra H2 reduction step to obtain the active metallic phase (M) and surfactants to control the size of nanoparticles, most M/ZnO nanocomposites undergo two- or multi-step synthesis, which is disadvantageous for the stable catalytic performance of the M/ZnO nanocomposites. In this work, we demonstrate facile one-pot synthesis of M/ZnO (M = Pd, Au, Ag, and Cu) nanocomposites in refluxed ethylene glycol as a solvent, without using any surfactants. During the synthesis process, Pd and ZnO species can stabilize each other from further aggregation by reducing their individual surface energies, thereby achieving size control of particles. Besides, NaHCO3 serves as a size-control tool for Pd nanoparticles by adjusting the alkaline conditions. Ethylene glycol serves as a mild reducing agent and solvent owing to its capacity to reduce Pd ions to generate Pd crystals. The nucleation and growth of Pd particles are achieved by thermal reduction, while the ZnO nanocrystals are formed by thermal decomposition of Zn(OAc)2. X-ray diffraction patterns of the M/ZnO and ZnO were analyzed to study the phase of the nanocomposites, and the results show that no impurity phase was detected. Transmission electron microscopy (TEM) was used to study the morphology and structural properties. In addition, X-ray photoelectron spectroscopy analysis was performed to further confirm the formation of M/ZnO hybrid materials, and the results confirm SMSI between Pd and ZnO. Inductively coupled plasma mass spectrometry was used to check the actual elemental compositions, and the results show that the detected atomic ratios of Pd/Zn were consistent with the values in the theoretical recipe. To investigate the effects of the Pd/Zn molar ratios and the added amount of NaHCO3 on Pd size, the average sizes of Pd particles were calculated, and the results were confirmed by TEM observation. The Cu/ZnO/Al2O3 composite is a widely known catalyst for hydrogenation of CO2 to methanol, and other M/ZnO composites are also catalytic for this reaction. Therefore, different M/ZnO hybrids were further studied as catalysts for hydrogenation of CO2 to methanol, among which Pd/ZnO (1 : 9) demonstrated the best performance (30% CO2 conversion, 69% methanol selectivity, and 421.9 gmethanol·(kg catalyst·h)-1 at 240 ℃ and 5 MPa. The outstanding catalytic performance may be explained by the following two factors: first, Pd is a good catalyst for the dissociation of H2 to give active H atoms, and second, SMSI between Pd and ZnO favors the formation of surface oxygen vacancies on ZnO. Moreover, most M/ZnO composites exhibit excellent performance in methanol selectivity, especially the Au/ZnO catalyst, which has the highest methanol selectivity (82%) despite having the lowest CO2 conversion. Hopefully, this work would provide a simple route for synthesis of M/ZnO nanocomposites with clean surfaces for catalysis.

Key words: Metal/ZnO    Hydrogenation    CO2    Methanol    Nanocomposites
收稿日期: 2017-12-29 出版日期: 2018-02-26
中图分类号:  O643  
基金资助: 国家自然科学基金面上项目(21373153)
通讯作者: 刘国亮,洪昕林     E-mail: liugl@whu.edu.cn;hongxl@whu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘艳芳
胡兵
尹雅芝
刘国亮
洪昕林

引用本文:

刘艳芳,胡兵,尹雅芝,刘国亮,洪昕林. 无表面活性剂条件下一锅法制备金属/氧化锌复合材料用于催化二氧化碳加氢制甲醇反应[J]. 物理化学学报, 2019, 35(2): 223-229, 10.3866/PKU.WHXB201802263

Yanfang LIU,Bing HU,Yazhi YIN,Guoliang LIU,Xinlin HONG. One-Pot Surfactant-Free Synthesis of Transition Metal/ZnO Nanocomposites for Catalytic Hydrogenation of CO2 to Methanol. Acta Phys. -Chim. Sin., 2019, 35(2): 223-229, 10.3866/PKU.WHXB201802263.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201802263        http://www.whxb.pku.edu.cn/CN/Y2019/V35/I2/223

Fig 1  Schematic illustration of hybrid Pd/ZnO nanoparticle fabrication. This approach can also be extended to fabricate (Au, Ag, and Cu)/ZnO nanocomposites by changing the metal precursor.
Fig 2  (a) XRD pattern, (b) TEM and (c) high resolution TEM images of the Pd/ZnO sample prepared at a Pd/Zn ratio of 1 : 6, and (d) TEM image of pure ZnO sample.
Fig 3  XPS analysis of the Pd/ZnO nanocomposite. (a) The wide-range XPS spectrum; high resolution spectra of (b) Zn 2p, (c) Pd 3d, (d) O 1s.
Fig 4  Histogram of Pd particle size versus (a) the mole ratio of Pd to Zn and (b) the amount of NaHCO3.
Fig 5  XRD patterns of ZnO and M/ZnO (M = Pd, Au, Ag, and Cu) synthesized at a M/Zn molar ratio of 1 : 6.
Catalyst T/℃ CO2 Conv. (%) Methanol Select. (%) CO Select. (%) Methanol Yield (%) Methanol STY gmethanol/(kg catalyst·h)
Ag/ZnO (1 : 6)a 260 21.9 26 74 5.7 114.5
Cu/ZnO (1 : 6) 260 14.0 23 77 3.2 64.3
Au/ZnO (1 : 6) 260 6.6 82 18 5.4 108.5
Pd/ZnO (1 : 6) 260 20.7 71 29 14.7 295.3
Pd/ZnO (1 : 6) 240 19.0 77 23 14.6 293.3
Pd/ZnO (1 : 6) 220 9.8 84 16 8.2 164.7
Pd/ZnO (1 : 9) 240 30.5 69 31 21.0 421.9
Pd/ZnO (1 : 12) 240 21.6 83 17 17.9 359.6
Pd/ZnO (1 : 24) 240 19.2 59 41 11.3 227.0
Table 1  Catalytic performance of M/ZnO/Al2O3 catalysts (M = Ag, Cu, Au, and Pd).
1 Lewis S. A. ; Wilburn J. P. ; Wellons M. S. ; Cliffel D. E. ; Lukehart C. M. Phys. Status Solidi A 2015, 212, 2903.
doi: 10.1002/pssa.201532256
2 Chen Y. ; Yang X. Y. ; Zhang P. ; Liu D. S. ; Gui J. Z. ; Peng H. L. ; Liu D. Acta Phys. -Chim. Sin. 2017, 33, 2082.
doi: 10.3866/PKU.WHXB201705176
陈阳; 杨晓燕; 张鹏; 刘道胜; 桂建舟; 彭海龙; 刘丹. 物理化学学报, 2017, 33, 2082.
doi: 10.3866/PKU.WHXB201705176
3 Xu B. Q. ; Wei J. M. ; Yu Y. T. ; Li Y. ; Li J. L. ; Zhu Q. M. J. Phys. Chem. B 2003, 107, 5203.
doi: 10.1023/A:1021419929938
4 Wang Y. Acta Phys. -Chim. Sin. 2017, 33, 857.
doi: 10.3866/PKU.WHXB201703172
王野. 物理化学学报, 2017, 33, 857.
doi: 10.3866/PKU.WHXB201703172
5 Rathi A. K. ; Gawande M. B. ; Ranc V. ; Pechousek J. ; Petr M. ; Cepe K. ; Varmab R. S. ; Zboril R. Catal. Sci. Technol. 2016, 6, 152.
doi: 10.1039/C5CY00956A
6 Nadagouda M. N. ; Varma R. S. Biomacromolecules 2007, 8, 2762.
doi: 10.1021/bm700446p
7 Zhang J. ; Yu J. G. ; Jaroniec M. ; Gong J. R. Nano Lett. 2012, 12, 4584.
doi: 10.1021/nl301831h
8 Liu T. X. ; Li B. X. ; Hao Y. G. ; Han F. ; Zhang L. L. ; Hu L. Y. Appl. Catal. B-Environ. 2015, 165, 378.
doi: 10.1016/j.apcatb.2014.10.041
9 Wang D. H. ; Kou R. ; Choi D. ; Yang Z. G. ; Nie Z. M. ; Li J. ; Saraf L. V. ; Hu D. H. ; Zhang J. G. ; Graff G. L. ; et al ACS Nano 2010, 4, 1587.
doi: 10.1021/nn901819n
10 Polarz S. ; Neues F. ; van den Berg M. W. E. ; Grunert W. ; Khodeir L. J. Am. Chem. Soc. 2005, 127, 12028.
doi: 10.1021/ja0516514
11 Behrens M. ; Studt F. ; Kasatkin I. ; Kühl S. ; Hä vecker M. ; Abild-Pedersen F. ; Zander S. ; Girgsdies F. ; Kurr P. ; Kniep B. ; et al Science 2012, 336, 893.
doi: 10.1126/science.1219831
12 Ma J. ; Sun N. ; Zhang X. ; Zhao N. ; Xiao F. ; Wei W. ; Sun Y. Catal. Today 2009, 148, 221.
doi: 10.1016/j.cattod.2009.08.015
13 Wang G. Y. ; Zhang W. X. ; Lian H. L. ; Jiang D. Z. ; Wu T. H. Appl. Catal. A 2003, 239, 1.
doi: 10.1016/S0926-860X(02)00098-4
14 Da Costa-Serra J. F. ; Guil-López R. ; Chica A. Int. J. Hydrogen Energy 2010, 35, 6709.
doi: 10.1016/j.ijhydene.2010.04.013
15 Huang L. ; Kramer G. J. ; Wieldraaijer W. ; Brands D. S. ; Poels E. K. ; Castricum H. L. ; Bakker H. Catal. Lett. 1997, 48, 55.
doi: 10.1023/A:1019014701674
16 Murray C. B. ; Norris D. J. ; Bawendi M. G. J. Am. Chem. Soc. 1993, 115, 8706.
doi: 10.1021/ja00072a025
17 Sun S. H. ; Murray C. B. ; Weller D. ; Folks L. ; Moser A. Science 2000, 287, 1989.
doi: 10.1126/science.287.5460.1989
18 Chen S. F. ; Li J. P. ; Qian K. ; Xu W. P. ; Lu Y. ; Huang W. X. ; Yu S. H. Nano Res. 2010, 3, 244.
doi: 10.1007/s12274-010-1027-z
19 Zhang H. Y. ; Xie Y. ; Sun Z. Y. ; Tao R. T. ; Huang C. L. ; Zhao Y. F. ; Liu Z. M. Langmuir 2011, 27, 1152.
doi: 10.1021/la1034728
20 Xie Y. ; Ding K. L. ; Liu Z. M. ; Tao R. T. ; Sun Z. Y. ; Zhang H. Y. ; An G. M. J. Am. Chem. Soc. 2009, 131, 6648.
doi: 10.1021/ja900447d
21 Wang Y. ; Ren J. W. ; Deng K. ; Gui L. L. ; Tang Y. Q. Chem. Mater. 2000, 12, 1622.
doi: 10.1002/chin.200041202
22 Fu X. Y. ; Wang Y. ; Wu N. Z. ; Gui L. L. ; Tang Y. Q. J. Mater. Chem. 2003, 13, 1192.
doi: 10.1039/B211747A
23 Zhang J. L. ; Ji H. ; Wei Y. G. ; Wang Y. ; Wu N. Z. J. Phys. Chem. C 2008, 112, 10688.
doi: 10.1021/jp8003294
24 Chen X. M. ; Wu G. H. ; Chen J. M. ; Chen X. ; Xie Z. X. ; Wang X. R. J. Am. Chem. Soc. 2011, 133, 3693.
doi: 10.1021/ja110313d
25 Sun Y. G. ; Gates B. ; Mayers B. ; Xia Y. N. Nano Lett. 2002, 2, 165.
doi: 10.1021/nl010093y
26 Ranjbar M. ; Taher M.A. ; Sam A. J. Clust. Sci. 2014, 25, 1657.
doi: 10.1007/s10876-014-0764-7
27 Zhang J. ; Mo Y. ; Vukmirovic M. B. ; Klie R. ; Sasaki K. ; Adzic R. R. J. Phys. Chem. B 2004, 108, 10955.
doi: 10.1021/jp0379953
28 Jing L. Q. ; Xu Z. L. ; Sun X. J. ; Shang J. ; Cai W. M. Appl. Surf. Sci. 2001, 180, 308.
doi: 10.1016/S0169-4332(01)00365-8
29 Batista J. ; Pintar A. ; Mandrino D. ; Jenko M. ; Martin V. Appl. Catal. A-Gen. 2001, 206, 113.
doi: 10.1016/S0926-860X(00)00589-5
30 Matthey D. ; Wang J. G. ; Wendt S. ; Matthiesen J. ; Schaub R. ; Laegsgaard E. ; Hammer B. ; Besenbacher F. Science 2007, 315, 1692.
doi: 10.1126/science.1135752
31 Qiao B. T. ; Wang A.Q. ; Yang X. F. ; Allard L. F. ; Jiang Z. ; Cui Y. T. ; Liu J. Y. ; Li J. ; Zhang T. Nat. Chem. 2011, 3, 634.
doi: 10.1038/nchem.1095
32 Bock C. ; Paquet C. ; Couillard M. ; Botton G. A. ; MacDougall B. R. J. Am. Chem. Soc. 2004, 126, 8028.
doi: 10.1021/ja0495819
33 Chinchen G. C. ; Denny P. J. ; Jennings J. R. ; Spencer M. S. ; Waugh K. C. Appl. Catal. 1988, 36, 1.
doi: 10.1016/S0166-9834(00)80103-7
34 Liang X. L. ; Dong X. ; Lin G. D. ; Zhang H. B. Appl. Catal. B- Environ. 2009, 88, 315.
doi: 10.1016/j.apcatb.2008.11.018
35 Prüsse U. ; Vorlop K. D. J. Mol. Catal. A-Chem. 2001, 173, 313.
doi: 10.1016/S1381-1169(01)00156-X
36 Liao F. L. ; Huang Y. Q. ; Ge J. W. ; Zheng W. R. ; Tedsree K. ; Collier P. ; Hong X. L. ; Tsang S. C. Angew. Chem. Int. Ed. 2011, 50, 2162.
doi: 10.1002/anie.201007108
[1] 高云楠,刘世桢,赵振清,陶亨聪,孙振宇. 二氧化碳多相催化加氢制C2及以上烃类和醇的研究进展[J]. 物理化学学报, 2018, 34(8): 858-872.
[2] 张玉景,代兴超,王红利,石峰. 二氧化碳和胺催化合成甲酰胺反应研究[J]. 物理化学学报, 2018, 34(8): 845-857.
[3] 周智华,夏书梅,何良年. 绿色催化二氧化碳、炔丙醇和亲核试剂的三组分反应[J]. 物理化学学报, 2018, 34(8): 838-844.
[4] 程晓蒙,焦东霞,梁志豪,魏金金,李宏平,杨俊佼. 聚苯乙烯-聚4-乙烯基吡啶两亲嵌段共聚物在CO2膨胀液体中的组装行为[J]. 物理化学学报, 2018, 34(8): 945-951.
[5] 宁汇,王文行,毛勤虎,郑诗瑞,杨中学,赵青山,吴明铂. 1-辛基-3-甲基咪唑功能化石墨片负载氧化亚铜催化二氧化碳电还原制乙烯[J]. 物理化学学报, 2018, 34(8): 938-944.
[6] 易颜辉,王旬旬,王丽,闫金辉,张家良,郭洪臣. 等离子体引发CH3OH/NH3偶联反应合成腈类化合物[J]. 物理化学学报, 2018, 34(3): 247-255.
[7] 钱慧慧,韩潇,肇研,苏玉芹. 柔性Pd@PANI/rGO纸阳极在甲醇燃料电池中的应用[J]. 物理化学学报, 2017, 33(9): 1822-1827.
[8] 宁红岩,杨其磊,杨晓,李鹰霞,宋兆钰,鲁逸人,张立红,刘源. 碳纤维负载Rh-Mn紧密接触的催化剂及其合成气制乙醇催化性能[J]. 物理化学学报, 2017, 33(9): 1865-1874.
[9] 杨翼,罗来明,陈迪,刘洪鸣,张荣华,代忠旭,周新文. 石墨烯负载PtPd纳米催化剂的合成及其电催化氧化甲醇性能[J]. 物理化学学报, 2017, 33(8): 1628-1634.
[10] 程若霖,金锡雄,樊向前,王敏,田建建,张玲霞,施剑林. 氮掺杂还原氧化石墨烯与吡啶共聚g-C3N4复合光催化剂及其增强的产氢活性[J]. 物理化学学报, 2017, 33(7): 1436-1445.
[11] 裘建平,童怡雯,赵德明,何志桥,陈建孟,宋爽. TiO2纳米管电极上电化学还原CO2生成CH3OH[J]. 物理化学学报, 2017, 33(7): 1411-1420.
[12] 韩波,程寒松. 镍族金属团簇在催化加氢过程中的应用[J]. 物理化学学报, 2017, 33(7): 1310-1323.
[13] 李玲玲,陈韧,戴戬,孙野,张作良,李晓亮,聂小娃,宋春山,郭新闻. 苯和甲醇在H-ZSM-5催化剂上甲基化的反应机理[J]. 物理化学学报, 2017, 33(4): 769-779.
[14] 高晓平,郭章龙,周亚男,敬方梨,储伟. 锐钛矿型TiO2担载的Pd催化剂用于乙炔选择加氢的催化性能及其表征[J]. 物理化学学报, 2017, 33(3): 602-610.
[15] 白晓芳,陈为,王白银,冯光辉,魏伟,焦正,孙予罕. 二氧化碳电化学还原的研究进展[J]. 物理化学学报, 2017, 33(12): 2388-2403.