物理化学学报 >> 2018, Vol. 34 >> Issue (9): 1048-1060.doi: 10.3866/PKU.WHXB201802281

所属专题: 石墨炔

综述 上一篇    下一篇

石墨二炔及其电子转移增强特性

赵亚松1,张丽娟2,齐健2,金泉2,林凯峰1,王丹2,*()   

  1. 1 哈尔滨工业大学化工与化学学院,哈尔滨 150001
    2 中国科学院过程工程研究所,生化工程国家重点实验室,北京 100190
  • 收稿日期:2018-02-01 发布日期:2018-04-09
  • 通讯作者: 王丹 E-mail:danwang@ipe.ac.cn
  • 作者简介:王丹,中国科学院过程工程研究所研究员,于1994年获吉林大学化学专业学士学位,1997年获吉林大学硕士学位,2001年获日本国立山梨大学博士学位。2004年2月入选中国科学院“百人计划”并加入中国科学院过程工程研究所任研究员。2013年获国家杰出青年科学基金,2014年当选英国皇家化学会会士,2014年入选科技部“中青年科技创新领军人才”。主要从事纳微结构功能材料的设计合成以及其在能源存储与转换、光催化、生物检测和传感等领域的应用
  • 基金资助:
    国家自然科学基金(21590795);国家自然科学基金(51772294);国家自然科学基金(51572261);国家自然科学基金(51672276);国家自然科学基金(51672274);国家自然科学基金(51702321);国家自然科学基金(51661165013);国家自然科学基金(51772296);中国科学院-昆士兰合作科学基金(122111KYSB20170001);中国科学院科研装备研制项目(YZ201623);中国科学院青年创新促进会项目(2017070)

Graphdiyne with Enhanced Ability for Electron Transfer

Yasong ZHAO1,Lijuan ZHANG2,Jian QI2,Quan JIN2,Kaifeng LIN1,Dan WANG2,*()   

  1. 1 School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
    2 State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
  • Received:2018-02-01 Published:2018-04-09
  • Contact: Dan WANG E-mail:danwang@ipe.ac.cn
  • Supported by:
    the National Natural Science Foundation of China(21590795);the National Natural Science Foundation of China(51772294);the National Natural Science Foundation of China(51572261);the National Natural Science Foundation of China(51672276);the National Natural Science Foundation of China(51672274);the National Natural Science Foundation of China(51702321);the National Natural Science Foundation of China(51661165013);the National Natural Science Foundation of China(51772296);Queensland-Chinese Academy of Sciences Collaborative Science Fund(122111KYSB20170001);the Scientific InstrumentDeveloping Project of the Chinese Academy of Sciences(YZ201623);Youth Innovation Promotion Association of CAS(2017070)

摘要:

石墨二炔是由spsp2杂化的碳原子构成的新的碳同素异形体。由于石墨二炔具有独特的拓扑结构和电子结构、较高的电荷迁移率及优异的电子传输性能,使其与其他材料相互作用,可表现出独特的电子转移增强特性。本文基于石墨二炔的电子转移增强特性,概述了石墨二炔及其电子转移增强特性的最新研究进展,包括金属氧化物/石墨二炔、金属纳米颗粒/石墨二炔、聚合物/石墨二炔以及染料分子/石墨二炔等多种石墨二炔基材料。本文从理论和实验研究两个方面详细阐述了石墨二炔的电子转移增强特性、石墨二炔与不同材料的相互作用以及相关的应用。希望该综述能对石墨炔化学的发展起到一定的积极作用。

关键词: 石墨炔, 石墨炔基复合物, 电子转移增强, π-共轭骨架

Abstract:

As a new member of the carbon allotrope family, graphdiynes (GDs)consist of both sp-and sp2-hybridized carbon atoms, possessing unique π-conjugated carbon skeletons and expanded 18C-hexagonalpores in two dimensions. In contrast with the zero band gap graphene (GR), GDis a semiconductor with a direct band gap of 1.22 eV calculated according tothe density functional theory (DFT) using the HSE06 method; this makes it apotential semiconductor material that can supplant silicon in the integratedcircuit industry. Moreover, owing to the presence of diacetylenic linkagesbetween its hexagonal carbon rings, GD shows electron-deficient properties, which lead to its electron-accepting tendency. Graphdiynes exhibit unusualsemiconducting properties with excellent charge mobilities and electrontransport properties that are associated with its distinct topological andelectronic structures. Graphdiynes play the role of not only electron-acceptorsthat efficiently collect the electrons from other materials but also electron-donorsthat inject electrons into other systems, thus exhibiting excellentelectron-transfer enhancement characteristics. The unique electron-transferenhancement property of GDs inspired us to summarize the interactions betweenGDs and other materials including metal oxides, metal nano-particles, andorganic molecules. In this review paper, we first introduce the TiO2/GDnanocomposite, because the linking of GDs and titania nanoparticles (P25) throughthe Ti—O—Cbond sets an important precedent for exploring the electron-transfer behaviors involvingGDs and the metal oxide. These results indicate that the GDs can act asacceptors of the photogenerated electrons in the TiO2/GD system, effectively suppressing charge recombination and resulting in excellent photocatalyticproperties. Nevertheless, the GDs in CdSe quantum dots (QDs)/GD composites areable to collect photogenerated holes from the QDs and perform as promising hole-transfermaterials in the photoelectrochemical cell for water splitting. As a result, the interactions between GDs and various metal compounds should be explored todeeply understand the electron-transfer properties of GDs. Furthermore, GDs canbe also used as electron donors to reduce PdCl42- toPd nanoparticles that can subsequently be used for the electroless depositionof highly dispersed Pd nanoparticles. Based on electrostatic potential surfaceanalysis over the Pt2/GD, GDs can attract the electron cloud fromthe Pt nanoparticles and produce a positive polarization of the metal atomsurface. However, due to its large π-conjugated system, GD can alsocollect and transfer electrons from the electrode under a bias voltage, making ita new type of electrocatalyst material, especially for single-atom catalysts.The interactions between GDs and metal particles/clusters/atoms have attracted thebroad attention of the rapidly developing field of single-atom catalysis.Finally, research on the interactions between GDs and organic molecules, especially biomolecules, is still in its infancy and requires development. In summary, we overview the recent research progress on GD and its enhanced ability forelectron transfer in this review paper, including metal oxides/GD, metalnano-particles/GD, polymers/GD, and organic molecules/GD, from bothexperimental and theoretical perspectives, and emphasize the interactions andelectron-transfer enhancement properties. It is expected that this review canpromote the development and applications of GD chemistry.

Key words: Graphdiyne, GD-based composites, Electron-transfer enhancement, π-conjugated skeleton

MSC2000: 

  • O641