Please wait a minute...
物理化学学报  2018, Vol. 34 Issue (12): 1312-1320    DOI: 10.3866/PKU.WHXB201803011
所属专题: 表面物理化学
通讯     
衬底对N@C60分子电子自旋共振谱的影响
赵烨梁,王兵*()
Effect of Substrate on the Electron Spin Resonance Spectra of N@C60 Molecules
Yeliang ZHAO,Bing WANG*()
 全文: PDF(1018 KB)   HTML 输出: BibTeX | EndNote (RIS) |
摘要:

N@C60内嵌富勒烯是一种在量子科技领域有较高应用前景的分子。科学家们设计了一系列以内嵌富勒烯分子为基本量子单元的量子计算机模型,而构筑这样的模型具有极高的挑战。其中,由于内嵌富勒烯分子阵列的制备通常需要合适的衬底,而衬底与分子之间的相互作用会影响甚至破坏内嵌N原子的自旋信号。因此研究和理解衬底与内嵌富勒烯分子的相互作用具有重要的意义。本文制备了高质量的N@C60分子,并采用扫描隧道显微镜对其在Au(111)表面的结构及电子态进行表征。通过对比N@C60分子在Au(111)、Si(111)、SiO2表面的电子自旋共振(ESR)信号随时间及其抽真空处理的变化,表明Au原子的核自旋与内嵌N原子的电子自旋的耦合作用是Au(111)表面N@C60单分子层的ESR谱中内嵌N原子的信号衰减的主要原因。

关键词: Au(111)内嵌富勒烯扫描隧道显微镜电子自旋共振退相干偶极耦合    
Abstract:

The controlled coupling of spin centers is essential in the construction of molecular spin-based quantum information processing architectures. A major challenge is to induce the requisite coupling between two adjacent spins, while protecting them from neighboring spins and other environmental interactions. Owing to their native spin properties, endohedral fullerenes are attractive for use as elements in quantum information processing architectures. N@C60 is an endohedral fullerene molecule with a highly reactive nitrogen atom at the center of the carbon cage. The endohedral nitrogen is atomic and not covalently bound to the cage atoms; therefore, the nitrogen atom is chemically inert toward the outer environment. Owing to its remarkably long electron-spin lifetimes and sharp resonances, N@C60 has exceptional properties for quantum computing. The thermal stability and molecular structure of N@C60 make it a useful embodiment of a quantum bit — a fundamental element for a quantum computer. Several future quantum computer architectures based on N@C60 have been proposed, one of which is a two-dimensional, quantum-bit array on specific substrates. However, a challenging yet important task is to understand the effect of various substrates on the spin properties of the endohedral fullerene, since the interaction between the endohedral fullerene and the substrate may largely affect the spin characters of the endohedral N atom. The fabrication of an endohedral fullerene molecular array on substrates is also a challenge because high-temperature methods such as evaporation will cause decomposition of N@C60. Here we report our investigation on the electron spin resonance (ESR) of N@C60 molecules on various substrates such as Au(111), Si(111), and SiO2. In this study, N@C60 was prepared using the ion implantation method, and enrichment was performed using a multistep and recycling high-performance liquid chromatography (HPLC) system with a Cosmosil Buckyprep column. N@C60 molecular films on Au(111) substrates were prepared at room temperature. In addition, scanning tunneling microscope (STM) topography of the N@C60/C60 monolayer on Au(111) was obtained at a sample temperature of 5 K in ultra high vacuum (UHV). We found that the ESR signal of the N@C60 molecules decreases rapidly and disappeared approximately 360 min after the deposition of N@C60 on Au(111). In comparison, the ESR signal was maintained for a longer time on the Si(111) and SiO2 substrates. We propose that coupling between the Au(111) substrate and the endohedral N atoms quenches the ESR signal of the endohedral N atom, while the Si(111) and SiO2 substrates have a smaller effect on the ESR signal. This result offers useful information for the design of basic quantum computer architectures.

Key words: Au(111)    Endohedral fullerene    Scanning tunneling microscopy    Electron spin Resonance    Decohence    Dipolar coupling
收稿日期: 2018-01-23 出版日期: 2018-03-01
中图分类号:  O647  
基金资助: 国家重点研发计划(2016YFA0200603)
通讯作者: 王兵     E-mail: bwang@ustc.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
赵烨梁
王兵

引用本文:

赵烨梁,王兵. 衬底对N@C60分子电子自旋共振谱的影响[J]. 物理化学学报, 2018, 34(12): 1312-1320.

Yeliang ZHAO,Bing WANG. Effect of Substrate on the Electron Spin Resonance Spectra of N@C60 Molecules. Acta Phys. -Chim. Sin., 2018, 34(12): 1312-1320.

链接本文:

http://www.whxb.pku.edu.cn/CN/10.3866/PKU.WHXB201803011        http://www.whxb.pku.edu.cn/CN/Y2018/V34/I12/1312

图1  (a) N@C60富集过程中在HPLC色谱中的最后六次循环的色谱图。(b)图(a)中最后一个循环的放大图,图中的Ⅱ时间为最终收集的N@C60富集样品
图2  N@C60/C60混合物的MALDI-TOF质谱结果
图3  不同衬底表面的N@C60薄膜的ESR谱:(a)样品1,Au(111)表面200 μL N@C60/C60甲苯溶液;(b)样品2,Au(111)表面400 μL N@C60/C60甲苯溶液;(c)样品3,Si(111)表面400 μL N@C60/C60甲苯溶液;(d)样品4,SiO2表面400 μL N@C60/C60甲苯溶液;(e)图a–d中样品的ESR谱中内嵌N信号强度随时间变化
图4  (a) Au(111)表面N@C60/C60分子层在不同处理后测得的ESR谱,谱-1:干燥氮气吹干,谱-2:机械泵抽真空至10 torr;谱-3:分子泵抽真空至10-7 torr. (b) SiO2表面N@C60/C60分子层在不处理后测得的ESR谱,谱-4:干燥氮气吹干;谱-5:机械泵抽真空至10 torr;谱-6:分子泵抽真空至10?7 torr;(c) Au(111)表面和SiO2表面的N@C60/C60重新溶于甲苯后测得的溶液的ESR谱,分别用红色和黑色谱线给出
图5  N@C60/C60样品在不同温度加热后的ESR实验结果
图6  (a) Au(111)表面N@C60分子的STM图像,扫描条件:1.0 V, 50 pA, 5 K,扫描范围:90 nm × 80 nm;插图的扫描条件:100 mV, 200 pA, 5 K,扫描范围:4.2 nm × 4.2 nm。(b)图a中标注位置的轮廓线
图7  Au表面的N@C60/C60分子层在抽真空过程前后的示意图
1 Chaur M. N. ; Athans A. J. ; Echegoyen L. Tetrahedron 2008, 64, 11387.
doi: 10.1016/j.tet.2008.08.060
2 Stevenson S. ; Rice G. ; Glass T. ; Harich K. ; Cromer F. ; Jordan M. R. ; Craft J. ; Hadju E. ; Bible R. ; Olmstead M. M. ; et al Nature 1999, 401, 55.
doi: 10.1038/43415
3 Wang C. R. ; Kai T. ; Tomiyama T. ; Yoshida T. ; Kobayashi Y. ; Nishibori E. ; Takata M. ; Sakata M. ; Shinohara H. Angew. Chem. Int. Ed. 2001, 40, 397.
doi: 10.1002/1521-3773(20010119)40:2<397::AID-ANIE397>3.0.CO;2-3
4 Chai Y. ; Guo T. ; Jin C. ; Haufler R. E. ; Chibante L. P. F. ; Fure J. ; Wang L. ; Alford J. M. ; Smalley R. E. J. Phys. Chem. 1991, 95, 7564.
doi: 10.1021/j100173a002
5 Yamada M. ; Akasaka T. ; Nagase S. Acc. Chem. Res. 2010, 43 (1), 92.
doi: 10.1021/ar900140n
6 Sun B. ; Li M. ; Luo H. ; Shi Z. ; Gu Z. Electrochim. Acta 2002, 47, 3545.
doi: 10.1016/S0013-4686(02)00355-9
7 Liu X. S. ; Lei D. ; Gan L. H. Acta Phys. -Chim. Sin. 2016, 32, 929.
doi: 10.3866/PKU.WHXB201601221
刘学森; 雷丹; 甘利华. 物理化学学报, 2016, 32, 929.
doi: 10.3866/PKU.WHXB201601221
8 Sun D. Y. ; Liu Z. Y. ; Guo X. H. ; Xu W. G. ; Ji Y. P. ; Liu S. Y. Acta Phys. -Chim. Sin. 1996, 12, 1110.
doi: 10.3866/PKU.WHXB19961213
孙大勇; 刘子阳; 郭兴华; 徐文国; 季怡萍; 刘淑莹. 物理化学学报, 1996, 12, 1110.
doi: 10.3866/PKU.WHXB19961213
9 Sun D. Y. ; Liu Z. Y. ; Guo X. H. ; Xu W. G. ; Ji Y. P. ; Liu S. Y. Acta Phys. -Chim. Sin. 1996, 12, 873.
doi: 10.3866/PKU.WHXB19961003
孙大勇; 刘子阳; 郭兴华; 徐文国; 季怡萍; 刘淑莹. 物理化学学报, 1996, 12, 873.
doi: 10.3866/PKU.WHXB19961003
10 Alvarez M. M. ; Gillan E. G. ; Holczer K. ; Kaner R. B. ; Min K. S. ; Whetten R. L. J. Phys. Chem. 1991, 95, 10561.
doi: 10.1021/j100179a014
11 Stevenson S. ; Mackey M. A. ; Stuart M. A. ; Phillips J. P. ; Easterling M. L. ; Chancellor C. J. ; Olmstead M. M. ; Balch A. L. J. Am. Chem. Soc. 2008, 130, 11844.
doi: 10.1021/ja803679u
12 Saunders M. ; Jiménez-Vázquez H. A. ; Cross R. J. ; Poreda R. J. Science 1993, 259, 1428.
doi: 10.1126/science.259.5100.1428
13 Saunders M. ; Cross R. J. ; Jiménez-Vázquez H. A. ; Shimshi R. ; Khong A. Science 1996, 271, 1693.
doi: 10.1126/science.271.5256.1693
14 Saunders M. ; Jiménez-Vázquez H. A. ; Cross R. J. ; Mroczkowski S. ; Freedberg D. I. ; Anet F. A. L. Nature 1994, 367, 256.
doi: 10.1038/367256a0
15 Murphy T. A. ; Pawlik Th ; Weidinger A. ; H?hne M. ; Alcala R. ; Spaeth J. M. Phys. Rev. Lett. 1996, 77, 1075.
doi: 10.1103/PhysRevLett.77.1075
16 Weidinger A. ; Waiblinger M. ; Pietzak B. ; Murphy T. A. Appl. Phys. A 1998, 66, 287.
doi: 10.1007/s003390050668
17 Dietel E. ; Hirsch A. ; Pietzak B. ; Waiblinger M. ; Lips K. ; Weidinger A. ; Gruss A. ; Dinse K. J. Am. Chem. Soc. 1999, 121, 2432.
doi: 10.1021/ja983812s
18 Greer J. C. Chem. Phys. Lett. 2000, 326, 567.
doi: 10.1016/S0009-2614(00)00839-3
19 Harneit W. Phys. Rev. A 2000, 65, 032322.
doi: 10.1103/PhysRevA.65.032322
20 Pietzak B. ; Waiblinger M. ; Murphy T. A. ; Weidinger A. ; H?hne M. ; Dietel E. ; Hirsch A. Chem. Phys. Lett. 1997, 279, 259.
doi: 10.1016/S0009-2614(97)01100-7
21 Goedde B. ; Waiblinger M. ; Jakes P. ; Weiden N. ; Dinse K. ; Weidinger A. Chem. Phys. Lett. 2001, 334, 12.
doi: 10.1016/S0009-2614(00)01406-8
22 Wakahara T. ; Matsunaga Y. ; Katayama A. ; Maeda Y. ; Kako M. ; Akasaka T. ; Okamura M. ; Kato T. ; Choe Y. ; Kobayashi K. ; et al Chem. Commun. 2003, 23, 2940.
doi: 10.1039/B309470G
23 Liu G. ; Khlobystov A. N. ; Ardavan A. ; Briggs G. A. D. ; Porfyrakis K. Chem. Phys. Lett. 2011, 508, 187.
doi: 10.1016/j.cplett.2011.04.039
24 Farrington B. J. ; Jevric M. ; Rance G. A. ; Ardavan A. ; Khlobystov A. N. ; Briggs G. A. D. ; Porfyrakis K. Angew. Chem. Int. Ed. 2012, 51, 3587.
doi: 10.1002/anie.201107490
25 Liu G. ; Khlobystov A. N. ; Charalambidis G. ; Coutsolelos A. G. ; Briggs G. A. D. ; Porfyrakis K. J. Am. Chem. Soc. 2012, 134, 1938.
doi: 10.1021/ja209763u
26 Liu G. ; Gimenez-Lopez M. ; Jevric M. ; Khlobystov A. N. ; Briggs G. A. D. ; Porfyrakis K. J. Phys. Chem. B 2013, 117, 5925.
doi: 10.1021/jp401582j
27 Plant S. R. ; Jevric M. ; Morton J. J. L. ; Ardavan A. ; Khlobystov A. N. ; Briggs G. A. D. ; Porfyrakis K. Chem. Sci. 2013, 4, 2971.
doi: 10.1039/c3sc50395j
28 Zhou S. ; Rasovic I. ; Briggs G. A. D. ; Porfyrakis K. Chem. Commun. 2015, 51, 7096.
doi: 10.1039/c5cc01459j
29 Benjamin S. C. ; Ardavan A. ; Briggs G. A. D. ; Britz D. A. ; Gunlycke D. ; Jefferson J. ; Jones M. A. G. ; Leigh D. F. ; Lovett B. W. ; Khlobystov A. N. ; et al J. Phys.: Condens. Matter 2006, 18, 867.
doi: 10.1088/0953-8984/18/21/S12
30 Waiblinger M. ; Lips K. ; Harneit W. ; Weidinger A. ; Dietel E. ; Hirsch A. Phys. Rev. B 2001, 64, 159901.
doi: 10.1103/PhysRevB.64.159901
31 Mauser H. ; Hirsch A. ; van Eikema Hommes N. J. R. ; Clark T. ; Pietzak B. ; Weidinger A. ; Dunsch L. Angew. Chem. Int. Ed. 1997, 36, 2835.
doi: 10.1002/anie.199728351
32 Song X. ; Ma Y. ; Wang C. ; Luo Y. Chem. Phys. Lett. 2011, 517, 199.
doi: 10.1016/j.cplett.2011.10.045
33 Jakes P ; Dinse K ; Meyer C. ; Harneit W. ; Weidinger A. Phys. Chem. Chem. Phys. 2003, 5, 4080.
doi: 10.1039/B308284A
34 Waiblinger M. ; Goedde B. ; Lips K. ; Harneit W. ; Jakes P. ; Weidinger A. ; Dinse K. AIP Conf. Proc. 2000, 544, 195.
doi: 10.1063/1.1342498
35 Warner M. ; Din S. ; Tupitsyn I. S. ; Morley G. W. ; Stoneham A. M. ; Gardener J. A. ; Wu Z. ; Fisher A. J. ; Heutz S. ; Kay C. W. M. ; et al Nature 2013, 503, 504.
doi: 10.1038/nature12597
[1] 王岩,李雄,胡善玮,徐倩,鞠焕鑫,朱俊发. Ca掺杂的CeO2模型催化剂的形貌和电子结构及其与CO2分子的相互作用[J]. 物理化学学报, 2018, 34(12): 1381-1389.
[2] 刘强,韩永,曹云君,李小宝,黄武根,余毅,杨帆,包信和,李毅敏,刘志. 利用原位APXPS与STM研究H2在ZnO(10${\rm{\bar 1}}$0)表面的活化[J]. 物理化学学报, 2018, 34(12): 1366-1372.
[3] 王心怡,谢磊,丁元琪,姚心仪,张弛,孔惠慧,王利坤,许维. 超高真空条件下碱基与金属在Au(111)表面的相互作用[J]. 物理化学学报, 2018, 34(12): 1321-1333.
[4] 赵新飞,陈浩,吴昊,王睿,崔义,傅强,杨帆,包信和. 氧化锌有序结构在Au(111)和Cu(111)上的生长[J]. 物理化学学报, 2018, 34(12): 1373-1380.
[5] 陈爱喜,汪宏,段赛,张海明,徐昕,迟力峰. 电势诱导的N-异丁酰基-L-半胱氨酸分子在金(111)表面的相转变[J]. 物理化学学报, 2017, 33(5): 1010-1016.
[6] 郭瑞,张嘉霖,赵宋焘,余小江,钟舒,孙硕,李震宇,陈伟. 基于全氟酞菁铜和碗烯双分子体系在银和石墨表面自组装行为的低温扫描隧道显微镜研究[J]. 物理化学学报, 2017, 33(3): 627-632.
[7] 王利,石何霞,王文元,施宏,邵翔. 三聚氰胺与蜜勒胺在Au (111)表面的自组装和氢键识别[J]. 物理化学学报, 2017, 33(2): 393-398.
[8] 蒋军辉,钱梦丹,薛继龙,夏盛杰,倪哲明,邵蒙蒙. In-Au(111)和Ir-Au(111)合金表面的性质及其对巴豆醛的吸附比较[J]. 物理化学学报, 2016, 32(12): 2932-2940.
[9] 叶娟,孙凯,陶敏龙,涂玉兵,谢正波,王亚利,郝少杰,肖华芳,王俊忠. 非手性的酞菁铜分子在Bi(111)表面上的手性特征[J]. 物理化学学报, 2016, 32(10): 2593-2598.
[10] 顾高臣,李娜,张雪,侯士敏,王永锋,吴凯. 谢尔宾斯基三角分形结构的STM研究[J]. 物理化学学报, 2016, 32(1): 195-200.
[11] 汪宏,张海明,迟力峰. 超高真空条件下表面辅助反应[J]. 物理化学学报, 2016, 32(1): 154-170.
[12] 韩迪, 洪泽文, 李东方, 郑菊芳, 王亚浩, 周小顺. 基于电化学方法研究以铜和银为电极的对苯二甲酸单分子结电导[J]. 物理化学学报, 2015, 31(1): 105-110.
[13] 肖雪春, 施炜, 倪哲明. Au(111)面上肉桂醛的选择性加氢机理[J]. 物理化学学报, 2014, 30(8): 1456-1464.
[14] 李旭, 邹志强, 刘晓勇, 李威. Si衬底上生长的铁硅化合物结构和取向分析[J]. 物理化学学报, 2014, 30(7): 1370-1376.
[15] 施炜, 张连阳, 夏盛杰, 倪哲明. 噻吩在M(111)(M=Pd, Pt, Au)表面的吸附[J]. 物理化学学报, 2014, 30(12): 2249-2255.